These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31790993)

  • 21. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes.
    De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL
    Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The removal of lignin and phenol from paper mill effluents by electrocoagulation.
    Uğurlu M; Gürses A; Doğar C; Yalçin M
    J Environ Manage; 2008 May; 87(3):420-8. PubMed ID: 17360102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.
    Tsioptsias C; Petridis D; Athanasakis N; Lemonidis I; Deligiannis A; Samaras P
    J Environ Manage; 2015 Dec; 164():104-13. PubMed ID: 26363257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distillery industrial wastewater(DIW) treatment by the combination of sono(US), photo(UV) and electrocoagulation(EC) process.
    Asaithambi P; Yesuf MB; Govindarajan R; Hariharan NM; Thangavelu P; Alemayehu E
    J Environ Manage; 2022 Oct; 320():115926. PubMed ID: 35940007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatment of wastewater from the washing process of a municipal solid waste collection container by electrochemical treatment using different anode materials: a statistical optimization.
    Takatas B; Sari Erkan H
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):29663-29680. PubMed ID: 36417059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anodic oxidation of slaughterhouse wastewater on boron-doped diamond: process variables effect.
    Abdelhay A; Jum'h I; Abdulhay E; Al-Kazwini A; Alzubi M
    Water Sci Technol; 2017 Dec; 76(11-12):3227-3235. PubMed ID: 29236002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wastewater treatment from the biodiesel production using waste cooking oil by electrocoagulation: a multivariate approach.
    Sari-Erkan H
    Water Sci Technol; 2019 Jun; 79(12):2366-2377. PubMed ID: 31411591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment of vegetable oil wastewater by a conventional activated sludge process coupled with electrocoagulation process.
    Akarsu C; Bilici Z; Dizge N
    Water Environ Res; 2022 Feb; 94(2):e10692. PubMed ID: 35187750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater.
    Bani-Melhem K; Al-Kilani MR; Tawalbeh M
    Chemosphere; 2023 Jan; 310():136668. PubMed ID: 36209869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes.
    Kobya M; Demirbas E; Akyol A
    Water Sci Technol; 2009; 60(9):2261-70. PubMed ID: 19901457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrocoagulation and electrooxidation technologies for pesticide removal from water or wastewater: A review.
    Biswas B; Goel S
    Chemosphere; 2022 Sep; 302():134709. PubMed ID: 35489460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decontamination of synthetic textile wastewater by electrochemical processes: energetic and toxicological evaluation.
    Mountassir Y; Benyaich A; Rezrazi M; Berçot P; Gebrati L
    Water Sci Technol; 2012; 66(12):2586-96. PubMed ID: 23109574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis.
    Shaker OA; Safwat SM; Matta ME
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26650-26662. PubMed ID: 36369444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on electrode combination for COD removal from domestic wastewater using electrocoagulation.
    Bote ME
    Heliyon; 2021 Dec; 7(12):e08614. PubMed ID: 34977420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective phosphate removal for advanced water treatment using low energy, migration electric-field assisted electrocoagulation.
    Tian Y; He W; Liang D; Yang W; Logan BE; Ren N
    Water Res; 2018 Jul; 138():129-136. PubMed ID: 29574200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrocoagulation treatment of furniture industry wastewater.
    Vicente C; Silva JR; Santos AD; Silva JF; Mano JT; Castro LM
    Chemosphere; 2023 Jul; 328():138500. PubMed ID: 36963577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treatment of vinegar industry wastewater by electrocoagulation with monopolar aluminum and iron electrodes and toxicity evaluation.
    Yılmaz S; Gerek EE; Yavuz Y; Koparal AS
    Water Sci Technol; 2018 Dec; 78(12):2542-2552. PubMed ID: 30767919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment of the baker's yeast wastewater by electrocoagulation.
    Kobya M; Delipinar S
    J Hazard Mater; 2008 Jun; 154(1-3):1133-40. PubMed ID: 18082942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanism study.
    Song P; Sun C; Wang J; Ai S; Dong S; Sun J; Sun S
    Chemosphere; 2022 Jan; 287(Pt 1):131971. PubMed ID: 34438208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process.
    Llanos J; Cotillas S; Cañizares P; Rodrigo MA
    Water Res; 2014 Apr; 53():329-38. PubMed ID: 24531029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.