BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31791151)

  • 21. Evaluation of iron oxide nanoparticle biocompatibility.
    Hanini A; Schmitt A; Kacem K; Chau F; Ammar S; Gavard J
    Int J Nanomedicine; 2011; 6():787-94. PubMed ID: 21589646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study.
    Balivada S; Rachakatla RS; Wang H; Samarakoon TN; Dani RK; Pyle M; Kroh FO; Walker B; Leaym X; Koper OB; Tamura M; Chikan V; Bossmann SH; Troyer DL
    BMC Cancer; 2010 Mar; 10():119. PubMed ID: 20350328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic iron oxide nanoparticles for tumor-targeted therapy.
    Chen B; Wu W; Wang X
    Curr Cancer Drug Targets; 2011 Feb; 11(2):184-9. PubMed ID: 21158723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe₂O₄.
    Oh Y; Lee N; Kang HW; Oh J
    Nanotechnology; 2016 Mar; 27(11):115101. PubMed ID: 26871973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy.
    Wydra RJ; Kruse AM; Bae Y; Anderson KW; Hilt JZ
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4660-6. PubMed ID: 24094173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.
    Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Intracellular Hyperthermia Efficiency by Magnetic Nanoparticles Modified with Nucleus and Mitochondria Targeting Peptides.
    Wang X; Zhou J; Chen B; Tang Z; Zhang J; Li L; Tang J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6560-6. PubMed ID: 27427753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the biocompatibility of Fe3O4 ferromagnetic nanoparticles with human blood cells.
    Stamopoulos D; Manios E; Gogola V; Niarchos D; Pissas M
    J Nanosci Nanotechnol; 2010 Sep; 10(9):6110-5. PubMed ID: 21133157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RGD-Functionalized Fe
    Arriortua OK; Insausti M; Lezama L; Gil de Muro I; Garaio E; de la Fuente JM; Fratila RM; Morales MP; Costa R; Eceiza M; Sagartzazu-Aizpurua M; Aizpurua JM
    Colloids Surf B Biointerfaces; 2018 May; 165():315-324. PubMed ID: 29501962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anti-FGFR1 aptamer-tagged superparamagnetic conjugates for anticancer hyperthermia therapy.
    Jurek PM; Zabłocki K; Waśko U; Mazurek MP; Otlewski J; Jeleń F
    Int J Nanomedicine; 2017; 12():2941-2950. PubMed ID: 28442904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An arsenal of magnetic nanoparticles; perspectives in the treatment of cancer.
    Karponis D; Azzawi M; Seifalian A
    Nanomedicine (Lond); 2016 Aug; 11(16):2215-32. PubMed ID: 27480599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic mesoporous silica spheres for hyperthermia therapy.
    Martín-Saavedra FM; Ruíz-Hernández E; Boré A; Arcos D; Vallet-Regí M; Vilaboa N
    Acta Biomater; 2010 Dec; 6(12):4522-31. PubMed ID: 20601238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The concept of ferrofluid preheating in the treatment of cancer by magnetic hyperthermia of tissues.
    Malaescu I; Fannin PC; Marin CN; Lazic D
    Med Hypotheses; 2018 Jan; 110():76-79. PubMed ID: 29317074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: a potential theranostic approach against cancer.
    Comes Franchini M; Baldi G; Bonacchi D; Gentili D; Giudetti G; Lascialfari A; Corti M; Marmorato P; Ponti J; Micotti E; Guerrini U; Sironi L; Gelosa P; Ravagli C; Ricci A
    Small; 2010 Feb; 6(3):366-70. PubMed ID: 20020469
    [No Abstract]   [Full Text] [Related]  

  • 35. Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material.
    Wang B; Sandre O; Wang K; Shi H; Xiong K; Huang YB; Wu T; Yan M; Courtois J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109920. PubMed ID: 31500039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific Loss Power of Co/Li/Zn-Mixed Ferrite Powders for Magnetic Hyperthermia.
    Barrera G; Coisson M; Celegato F; Martino L; Tiwari P; Verma R; Kane SN; Mazaleyrat F; Tiberto P
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32290270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triple Therapy of HER2
    Zolata H; Afarideh H; Davani FA
    Cancer Biother Radiopharm; 2016 Nov; 31(9):324-329. PubMed ID: 27831759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?
    Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H
    Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.
    Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biocompatibility of Fe₃O₄@Au composite magnetic nanoparticles in vitro and in vivo.
    Li Y; Liu J; Zhong Y; Zhang J; Wang Z; Wang L; An Y; Lin M; Gao Z; Zhang D
    Int J Nanomedicine; 2011; 6():2805-19. PubMed ID: 22131827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.