BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31791151)

  • 41. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.
    Gogoi M; Sarma HD; Bahadur D; Banerjee R
    Nanomedicine (Lond); 2014 May; 9(7):955-70. PubMed ID: 24102326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study on Maximum Specific Loss Power in Fe
    Caizer C; Caizer IS
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy.
    Jaiswal MK; Pradhan A; Banerjee R; Bahadur D
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4082-9. PubMed ID: 24738355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic investigation of interaction of biocompatible iron oxide nanoparticles with epithelial cells for biomedical applications.
    Panariti A; Lettiero B; Alexandrescu R; Collini M; Sironi L; Chanana M; Morjan I; Wang D; Chirico G; Miserocchi G; Bucci C; Rivolta I
    J Biomed Nanotechnol; 2013 Sep; 9(9):1556-69. PubMed ID: 23980503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy.
    Caizer IS; Caizer C
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457167
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of the Aspect Ratio of Iron Oxide Nanorods on Hysteresis-Loss-Mediated Magnetic Hyperthermia.
    Sugumaran PJ; Yang Y; Wang Y; Liu X; Ding J
    ACS Appl Bio Mater; 2021 Jun; 4(6):4809-4820. PubMed ID: 35007030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A review on hyperthermia via nanoparticle-mediated therapy.
    Sohail A; Ahmad Z; Bég OA; Arshad S; Sherin L
    Bull Cancer; 2017 May; 104(5):452-461. PubMed ID: 28385267
    [TBL] [Abstract][Full Text] [Related]  

  • 48. LyP-1-conjugated Fe
    Teo P; Wang X; Zhang J; Zhang H; Yang X; Huang Y; Tang J
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):181-194. PubMed ID: 29165044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.
    Laurent S; Dutz S; Häfeli UO; Mahmoudi M
    Adv Colloid Interface Sci; 2011 Aug; 166(1-2):8-23. PubMed ID: 21601820
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia.
    Andreu I; Natividad E; Solozábal L; Roubeau O
    ACS Nano; 2015 Feb; 9(2):1408-19. PubMed ID: 25658023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.
    Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications.
    Amiri M; Salavati-Niasari M; Akbari A
    Adv Colloid Interface Sci; 2019 Mar; 265():29-44. PubMed ID: 30711796
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy.
    Balakrishnan PB; Silvestri N; Fernandez-Cabada T; Marinaro F; Fernandes S; Fiorito S; Miscuglio M; Serantes D; Ruta S; Livesey K; Hovorka O; Chantrell R; Pellegrino T
    Adv Mater; 2020 Nov; 32(45):e2003712. PubMed ID: 33002227
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging.
    Yu J; Yin W; Zheng X; Tian G; Zhang X; Bao T; Dong X; Wang Z; Gu Z; Ma X; Zhao Y
    Theranostics; 2015; 5(9):931-45. PubMed ID: 26155310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment.
    Patra S; Roy E; Karfa P; Kumar S; Madhuri R; Sharma PK
    ACS Appl Mater Interfaces; 2015 May; 7(17):9235-46. PubMed ID: 25893447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles.
    Long NV; Yang Y; Teranishi T; Thi CM; Cao Y; Nogami M
    J Nanosci Nanotechnol; 2015 Dec; 15(12):10091-107. PubMed ID: 26682455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and characterization of monodispersed water dispersible Fe
    Sharma KS; Ningthoujam RS; Dubey AK; Chattopadhyay A; Phapale S; Juluri RR; Mukherjee S; Tewari R; Shetake NG; Pandey BN; Vatsa RK
    Sci Rep; 2018 Oct; 8(1):14766. PubMed ID: 30283083
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Modern toxicology of magnetic nanomaterials].
    Cywińska MA; Grudziński IP
    Rocz Panstw Zakl Hig; 2012; 63(3):247-56. PubMed ID: 23173329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.
    Sanz B; Calatayud MP; Torres TE; Fanarraga ML; Ibarra MR; Goya GF
    Biomaterials; 2017 Jan; 114():62-70. PubMed ID: 27846403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.