These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31791201)

  • 1. Chaotic prediction of vibration performance degradation trend of rolling element bearing based on Weibull distribution.
    Cheng L; Xia X; Ye L
    Sci Prog; 2020; 103(1):36850419892194. PubMed ID: 31791201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of efficient degradation features for rolling element bearing prognosis using Gaussian Process Regression method.
    Kumar PS; Kumaraswamidhas LA; Laha SK
    ISA Trans; 2021 Jun; 112():386-401. PubMed ID: 33341238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remaining Useful Life Prediction of Rolling Bearings Using GRU-DeepAR with Adaptive Failure Threshold.
    Li J; Wang Z; Liu X; Feng Z
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new performance analysis method for rolling bearing based on the evidential reasoning rule considering perturbation.
    Zhang Y; Zhou G; Zhang W; He W; Wang Y; Zhang Y; Han P
    Sci Rep; 2022 Oct; 12(1):17842. PubMed ID: 36284194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing.
    Yang C; Ma J; Wang X; Li X; Li Z; Luo T
    ISA Trans; 2022 Feb; 121():349-364. PubMed ID: 33845998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories.
    Luo H; Bo L; Liu X; Zhang H
    Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD.
    Feng Z; Wang Z; Liu X; Li J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HKF-SVR Optimized by Krill Herd Algorithm for Coaxial Bearings Performance Degradation Prediction.
    Liu F; Li L; Liu Y; Cao Z; Yang H; Lu S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Health Degradation Monitoring and Early Fault Diagnosis of a Rolling Bearing Based on CEEMDAN and Improved MMSE.
    Lv Y; Yuan R; Wang T; Li H; Song G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29904002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.
    Xue L; Li N; Lei Y; Li N
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing.
    Liu R; Wang X; Kumar A; Sun B; Zhou Y
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps.
    Tayyab SM; Chatterton S; Pennacchi P
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient.
    Li Q; Yan C; Chen G; Wang H; Li H; Wu L
    ISA Trans; 2022 Oct; 129(Pt B):413-428. PubMed ID: 35181005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm.
    Shi R; Wang B; Wang Z; Liu J; Feng X; Dong L
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced rolling bearing fault detection method combining sparse code shrinkage denoising with fast spectral correlation.
    Li J; Yu Q; Wang X; Zhang Y
    ISA Trans; 2020 Jul; 102():335-346. PubMed ID: 32122637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. University of Ottawa constant load and speed rolling-element bearing vibration and acoustic fault signature datasets.
    Sehri M; Dumond P; Bouchard M
    Data Brief; 2023 Aug; 49():109327. PubMed ID: 37435140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visibility Graph Feature Model of Vibration Signals: A Novel Bearing Fault Diagnosis Approach.
    Zhang Z; Qin Y; Jia L; Chen X
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30428560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.