These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 31791230)
1. Transcriptomic and microstructural analyses in Liriodendron tulipifera Linn. reveal candidate genes involved in nectary development and nectar secretion. Liu H; Ma J; Li H BMC Plant Biol; 2019 Dec; 19(1):531. PubMed ID: 31791230 [TBL] [Abstract][Full Text] [Related]
2. Floral Nectary Morphology and Proteomic Analysis of Nectar of Liriodendron tulipifera Linn. Zhou Y; Li M; Zhao F; Zha H; Yang L; Lu Y; Wang G; Shi J; Chen J Front Plant Sci; 2016; 7():826. PubMed ID: 27379122 [TBL] [Abstract][Full Text] [Related]
3. The pennycress (Thlaspi arvense L.) nectary: structural and transcriptomic characterization. Thomas JB; Hampton ME; Dorn KM; David Marks M; Carter CJ BMC Plant Biol; 2017 Nov; 17(1):201. PubMed ID: 29137608 [TBL] [Abstract][Full Text] [Related]
4. Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues. Kram BW; Xu WW; Carter CJ BMC Plant Biol; 2009 Jul; 9():92. PubMed ID: 19604393 [TBL] [Abstract][Full Text] [Related]
5. Genome-Wide Identification and Expression Analysis of Yang L; Liu H; Hao Z; Zong Y; Xia H; Shen Y; Li H Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681950 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification of MIKC-type genes related to stamen and gynoecium development in Liriodendron. Liu H; Yang L; Tu Z; Zhu S; Zhang C; Li H Sci Rep; 2021 Mar; 11(1):6585. PubMed ID: 33753780 [TBL] [Abstract][Full Text] [Related]
7. Histochemical, metabolic and ultrastructural changes in leaf patelliform nectaries explain extrafloral nectar synthesis and secretion in Clerodendrum chinense. Paul S; Mitra A Ann Bot; 2024 Apr; 133(4):621-642. PubMed ID: 38366151 [TBL] [Abstract][Full Text] [Related]
8. Detaling morphological traits of Trollius europeus L. flowers, nectary structure, and holocrine nectar secretion through combined light and electron microscopy. Sulborska-Różycka A; Weryszko-Chmielewska E Micron; 2022 Nov; 162():103345. PubMed ID: 36113361 [TBL] [Abstract][Full Text] [Related]
9. Interspecies evolutionary divergence in Liriodendron, evidence from the nucleotide variations of LcDHN-like gene. Cheng Y; Li H BMC Evol Biol; 2018 Dec; 18(1):195. PubMed ID: 30567488 [TBL] [Abstract][Full Text] [Related]
10. Floral nectary, nectar production dynamics and chemical composition in five nocturnal Oenothera species (Onagraceae) in relation to floral visitors. Antoń S; Komoń-Janczara E; Denisow B Planta; 2017 Dec; 246(6):1051-1067. PubMed ID: 28779217 [TBL] [Abstract][Full Text] [Related]
11. Floral nectar production and carbohydrate composition and the structure of receptacular nectaries in the invasive plant Bunias orientalis L. (Brassicaceae). Denisow B; Masierowska M; Antoń S Protoplasma; 2016 Nov; 253(6):1489-1501. PubMed ID: 26560112 [TBL] [Abstract][Full Text] [Related]
12. Integrative analysis of transcriptome and proteome revealed nectary and nectar traits in the plant-pollinator interaction of Nitraria tangutorum Bobrov. Chen T; Zhou Y; Zhang J; Peng Y; Yang X; Hao Z; Lu Y; Wu W; Cheng T; Shi J; Chen J BMC Plant Biol; 2021 May; 21(1):230. PubMed ID: 34022807 [TBL] [Abstract][Full Text] [Related]
13. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. Liu G; Thornburg RW Plant J; 2012 May; 70(3):377-88. PubMed ID: 22151247 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic profiling of the floral fragrance biosynthesis pathway of Liriodendron and functional characterization of the LtuDXR gene. Zhang C; Liu H; Hu S; Zong Y; Xia H; Li H Plant Sci; 2022 Jan; 314():111124. PubMed ID: 34895551 [TBL] [Abstract][Full Text] [Related]
15. Morphological, anatomical, ultrastructural, and histochemical study of flowers and nectaries of Iris sibirica L. Konarska A Micron; 2022 Jul; 158():103288. PubMed ID: 35468500 [TBL] [Abstract][Full Text] [Related]
16. Floral nectar production and nectary structure of a bee-pollinated shrub from Neotropical savanna. Guimarães E; Nogueira A; Machado SR Plant Biol (Stuttg); 2016 Jan; 18(1):26-36. PubMed ID: 26194742 [TBL] [Abstract][Full Text] [Related]
17. Metabolic and transcriptomic analyses of nectaries reveal differences in the mechanism of nectar production between monocots (Ananas comosus) and dicots (Nicotiana tabacum). Göttlinger T; Pirritano M; Simon M; Fuß J; Lohaus G BMC Plant Biol; 2024 Oct; 24(1):940. PubMed ID: 39385091 [TBL] [Abstract][Full Text] [Related]
18. The evolution of floral nectaries in Disa (Orchidaceae: Disinae): recapitulation or diversifying innovation? Hobbhahn N; Johnson SD; Bytebier B; Yeung EC; Harder LD Ann Bot; 2013 Nov; 112(7):1303-19. PubMed ID: 23997231 [TBL] [Abstract][Full Text] [Related]
19. Nectar biosynthesis is conserved among floral and extrafloral nectaries. Chatt EC; Mahalim SN; Mohd-Fadzil NA; Roy R; Klinkenberg PM; Horner HT; Hampton M; Carter CJ; Nikolau BJ Plant Physiol; 2021 Apr; 185(4):1595-1616. PubMed ID: 33585860 [TBL] [Abstract][Full Text] [Related]
20. The role of alanine synthesis and nitrate-induced nitric oxide production during hypoxia stress in Cucurbita pepo nectaries. Solhaug EM; Roy R; Venterea RT; Carter CJ Plant J; 2021 Feb; 105(3):580-599. PubMed ID: 33119149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]