BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31791266)

  • 21. Exocytosis-Mediated Urinary Full-Length Megalin Excretion Is Linked With the Pathogenesis of Diabetic Nephropathy.
    De S; Kuwahara S; Hosojima M; Ishikawa T; Kaseda R; Sarkar P; Yoshioka Y; Kabasawa H; Iida T; Goto S; Toba K; Higuchi Y; Suzuki Y; Hara M; Kurosawa H; Narita I; Hirayama Y; Ochiya T; Saito A
    Diabetes; 2017 May; 66(5):1391-1404. PubMed ID: 28289043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Megalin contributes to kidney accumulation and nephrotoxicity of colistin.
    Suzuki T; Yamaguchi H; Ogura J; Kobayashi M; Yamada T; Iseki K
    Antimicrob Agents Chemother; 2013 Dec; 57(12):6319-24. PubMed ID: 24100504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting cisplatin-induced acute kidney injury by urinary neutrophil gelatinase-associated lipocalin excretion: a pilot prospective case-control study.
    Gaspari F; Cravedi P; Mandalà M; Perico N; de Leon FR; Stucchi N; Ferrari S; Labianca R; Remuzzi G; Ruggenenti P
    Nephron Clin Pract; 2010; 115(2):c154-60. PubMed ID: 20407275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding.
    Soni H; Kaminski D; Gangaraju R; Adebiyi A
    Ren Fail; 2018 Nov; 40(1):314-322. PubMed ID: 29619879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacokinetic determinants of cisplatin-induced subclinical kidney injury in oncology patients.
    Ibrahim ME; Chang C; Hu Y; Hogan SL; Mercke N; Gomez M; O'Bryant CL; Bowles DW; George B; Wen X; Buckley B; Aleksunes L; Joy MS
    Eur J Clin Pharmacol; 2019 Jan; 75(1):51-57. PubMed ID: 30220072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decreased expression of megalin and cubilin and altered mitochondrial activity in tenofovir nephrotoxicity.
    Cez A; Brocheriou I; Lescure FX; Adam C; Girard PM; Pialoux G; Moestrup SK; Fellahi S; Bastard JP; Ronco P; Plaisier E
    Hum Pathol; 2018 Mar; 73():89-101. PubMed ID: 29309806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Usefulness of urinary biomarkers for nephrotoxicity in cynomolgus monkeys treated with gentamicin, cisplatin, and puromycin aminonucleoside.
    Uchino H; Fujishima J; Fukuoka K; Iwakiri T; Kamikuri A; Maeda H; Nakama K
    J Toxicol Sci; 2017; 42(5):629-640. PubMed ID: 28904298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significance of urinary full-length megalin in patients with IgA nephropathy.
    Seki T; Asanuma K; Asao R; Nonaka K; Sasaki Y; Oliva Trejo JA; Kurosawa H; Hirayama Y; Horikoshi S; Tomino Y; Saito A
    PLoS One; 2014; 9(12):e114400. PubMed ID: 25502002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of rapid infusion of cisplatin on nephrotoxicity in patients with lung carcinoma.
    Mense ES; Smit AAJ; Crul M; Franssen EJF
    J Clin Pharm Ther; 2019 Apr; 44(2):249-257. PubMed ID: 30578577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of nephrotoxicity between patients with a solitary-functioning kidney and those with bilateral-functioning kidneys in cisplatin-based chemotherapy for advanced urothelial carcinoma: a Japanese retrospective multi-institutional study.
    Inoue T; Miyazaki J; Ichioka D; Narita S; Kageyama S; Sugimoto M; Mitsuzuka K; Shiraishi Y; Kinoshita H; Wakeda H; Nomoto T; Kikuchi E; Matsui Y; Fujie K; Habuchi T; Nishiyama H
    BMC Cancer; 2018 Mar; 18(1):290. PubMed ID: 29540229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lower Blood Pressure-Induced Renal Hypoperfusion Promotes Cisplatin-Induced Nephrotoxicity.
    Mizuno T; Hayashi T; Shimabukuro Y; Murase M; Hayashi H; Ishikawa K; Takahashi K; Yuzawa Y; Yamada S; Nagamatsu T
    Oncology; 2016; 90(6):313-20. PubMed ID: 27225867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors.
    Santoyo-Sánchez MP; Pedraza-Chaverri J; Molina-Jijón E; Arreola-Mendoza L; Rodríguez-Muñoz R; Barbier OC
    BMC Nephrol; 2013 Oct; 14():211. PubMed ID: 24093454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale Mathematical Model of Drug-Induced Proximal Tubule Injury: Linking Urinary Biomarkers to Epithelial Cell Injury and Renal Dysfunction.
    Gebremichael Y; Lu J; Shankaran H; Helmlinger G; Mettetal J; Hallow KM
    Toxicol Sci; 2018 Mar; 162(1):200-211. PubMed ID: 29126144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Urinary C-megalin for screening of renal scarring in children after febrile urinary tract infection.
    Yamanouchi S; Kimata T; Kino J; Kitao T; Suruda C; Tsuji S; Kurosawa H; Hirayama Y; Saito A; Kaneko K
    Pediatr Res; 2018 Mar; 83(3):662-668. PubMed ID: 29211055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of renal function using the level of neutrophil gelatinase-associated lipocalin is not predictive of nephrotoxicity associated with cisplatin-based chemotherapy.
    Kos FT; Sendur MA; Aksoy S; Celik HT; Sezer S; Civelek B; Yaman S; Zengin N
    Asian Pac J Cancer Prev; 2013; 14(2):1111-4. PubMed ID: 23621196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The efficacy of theophylline in preventing cisplatin-related nephrotoxicity in patients with cancer.
    Karademir LD; Dogruel F; Kocyigit I; Yazici C; Unal A; Sipahioglu MH; Oymak O; Tokgoz B
    Ren Fail; 2016 Jun; 38(5):806-14. PubMed ID: 27049176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Profiling of Kidney Injury Biomarkers in Patients Receiving Cisplatin: Time-dependent Changes in the Absence of Clinical Nephrotoxicity.
    George B; Wen X; Mercke N; Gomez M; O'Bryant C; Bowles DW; Hu Y; Hogan SL; Joy MS; Aleksunes LM
    Clin Pharmacol Ther; 2017 Apr; 101(4):510-518. PubMed ID: 28002630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association between urinary C-megalin levels and progressive kidney dysfunction: a cohort study based on the diabetes distress and care registry at Tenri (DDCRT 24).
    Niihata K; Nishiwaki H; Kinoshita M; Kurosawa K; Sakuramachi Y; Matsunaga S; Okamura S; Tsujii S; Hayashino Y; Kurita N;
    Acta Diabetol; 2023 Dec; 60(12):1643-1650. PubMed ID: 37439857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Renal proximal tubular dysfunction is a major determinant of urinary connective tissue growth factor excretion.
    Gerritsen KG; Peters HP; Nguyen TQ; Koeners MP; Wetzels JF; Joles JA; Christensen EI; Verroust PJ; Li D; Oliver N; Xu L; Kok RJ; Goldschmeding R
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1457-64. PubMed ID: 20237235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Megalin-related mechanism of hemolysis-induced acute kidney injury and the therapeutic strategy.
    Goto S; Hosojima M; Kabasawa H; Arai K; Takemoto K; Aoki H; Komochi K; Kobayashi R; Sugita N; Endo T; Kaseda R; Yoshida Y; Narita I; Hirayama Y; Saito A
    J Pathol; 2024 May; ():. PubMed ID: 38721910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.