These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31791547)

  • 1. Force Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical Properties.
    Martiel JL; Michelot A; Boujemaa-Paterski R; Blanchoin L; Berro J
    Biophys J; 2020 Jan; 118(1):182-192. PubMed ID: 31791547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Response of Actin Bundles under Mechanical Stress.
    Rückerl F; Lenz M; Betz T; Manzi J; Martiel JL; Safouane M; Paterski-Boujemaa R; Blanchoin L; Sykes C
    Biophys J; 2017 Sep; 113(5):1072-1079. PubMed ID: 28877490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the properties of a bundle of flexible actin filaments in an optical trap.
    Perilli A; Pierleoni C; Ciccotti G; Ryckaert JP
    J Chem Phys; 2016 Jun; 144(24):245102. PubMed ID: 27369544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of force generation by actin filament polymerization using an optical trap.
    Footer MJ; Kerssemakers JW; Theriot JA; Dogterom M
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2181-6. PubMed ID: 17277076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometrical and mechanical properties control actin filament organization.
    Letort G; Politi AZ; Ennomani H; Théry M; Nedelec F; Blanchoin L
    PLoS Comput Biol; 2015 May; 11(5):e1004245. PubMed ID: 26016478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeletal bundle mechanics.
    Bathe M; Heussinger C; Claessens MM; Bausch AR; Frey E
    Biophys J; 2008 Apr; 94(8):2955-64. PubMed ID: 18055529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical heterogeneity favors fragmentation of strained actin filaments.
    De La Cruz EM; Martiel JL; Blanchoin L
    Biophys J; 2015 May; 108(9):2270-81. PubMed ID: 25954884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly.
    Tojkander S; Gateva G; Husain A; Krishnan R; Lappalainen P
    Elife; 2015 Dec; 4():e06126. PubMed ID: 26652273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helical buckling of actin inside filopodia generates traction.
    Leijnse N; Oddershede LB; Bendix PM
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):136-41. PubMed ID: 25535347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tensile Loads on Tethered Actin Filaments Induce Accumulation of Cell Adhesion-Associated Proteins in Vitro.
    Kiyoshima D; Tatsumi H; Hirata H; Sokabe M
    Langmuir; 2019 Jun; 35(23):7443-7451. PubMed ID: 30204447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape control of lipid bilayer membranes by confined actin bundles.
    Tsai FC; Koenderink GH
    Soft Matter; 2015 Dec; 11(45):8834-47. PubMed ID: 26395896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helical motors and formins synergize to compact chiral filopodial bundles: A theoretical perspective.
    Maxian O; Mogilner A
    Eur J Cell Biol; 2024 Mar; 103(1):151383. PubMed ID: 38237507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mDia1 senses both force and torque during F-actin filament polymerization.
    Yu M; Yuan X; Lu C; Le S; Kawamura R; Efremov AK; Zhao Z; Kozlov MM; Sheetz M; Bershadsky A; Yan J
    Nat Commun; 2017 Nov; 8(1):1650. PubMed ID: 29162803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-like VASP condensates drive actin polymerization and dynamic bundling.
    Graham K; Chandrasekaran A; Wang L; Ladak A; Lafer EM; Rangamani P; Stachowiak JC
    Nat Phys; 2023 Apr; 19(4):574-585. PubMed ID: 38405682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment conditions control actin filament buckling and the production of forces.
    Berro J; Michelot A; Blanchoin L; Kovar DR; Martiel JL
    Biophys J; 2007 Apr; 92(7):2546-58. PubMed ID: 17208983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of actin filaments to the global compressive properties of fibroblasts.
    Ujihara Y; Nakamura M; Miyazaki H; Wada S
    J Mech Behav Biomed Mater; 2012 Oct; 14():192-8. PubMed ID: 23026698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair.
    Valencia FR; Sandoval E; Du J; Iu E; Liu J; Plotnikov SV
    Dev Cell; 2021 Dec; 56(23):3288-3302.e5. PubMed ID: 34822787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.
    Bidone TC; Tang H; Vavylonis D
    Biophys J; 2014 Dec; 107(11):2618-28. PubMed ID: 25468341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks.
    Li J; Biel T; Lomada P; Yu Q; Kim T
    Soft Matter; 2017 May; 13(17):3213-3220. PubMed ID: 28398452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of filopodia-like bundles in vitro from a dendritic network.
    Vignjevic D; Yarar D; Welch MD; Peloquin J; Svitkina T; Borisy GG
    J Cell Biol; 2003 Mar; 160(6):951-62. PubMed ID: 12642617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.