These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 31791763)
1. Characterizing biotransformation products and pathways of the flame retardant triphenyl phosphate in Daphnia magna using non-target screening. Choi Y; Jeon J; Choi Y; Kim SD Sci Total Environ; 2020 Mar; 708():135106. PubMed ID: 31791763 [TBL] [Abstract][Full Text] [Related]
2. Identification of biotransformation products of organophosphate ester from various aquatic species by suspect and non-target screening approach. Choi Y; Jeon J; Kim SD Water Res; 2021 Jul; 200():117201. PubMed ID: 34015574 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of new generation flame retardants to Daphnia magna. Waaijers SL; Hartmann J; Soeter AM; Helmus R; Kools SA; de Voogt P; Admiraal W; Parsons JR; Kraak MH Sci Total Environ; 2013 Oct; 463-464():1042-8. PubMed ID: 23886749 [TBL] [Abstract][Full Text] [Related]
4. Effects of triphenyl phosphate on growth, reproduction and transcription of genes of Daphnia magna. Yuan S; Li H; Dang Y; Liu C Aquat Toxicol; 2018 Feb; 195():58-66. PubMed ID: 29287174 [TBL] [Abstract][Full Text] [Related]
5. Biotransformation of three phosphate flame retardants and plasticizers in primary human hepatocytes: untargeted metabolite screening and quantitative assessment. Van den Eede N; de Meester I; Maho W; Neels H; Covaci A J Appl Toxicol; 2016 Nov; 36(11):1401-8. PubMed ID: 26889657 [TBL] [Abstract][Full Text] [Related]
6. Waterborne and Dietary Bioaccumulation of Organophosphate Esters in Zooplankton Liu W; Zhang H; Ding J; He W; Zhu L; Feng J Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954739 [TBL] [Abstract][Full Text] [Related]
7. Does Biotransformation of Aryl Phosphate Flame Retardants in Blood Cast a New Perspective on Their Debated Biomarkers? Van den Eede N; Ballesteros-Gómez A; Neels H; Covaci A Environ Sci Technol; 2016 Nov; 50(22):12439-12445. PubMed ID: 27766855 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation, Bioaccumulation, and Bioelimination of Triphenyl Phosphate and Its Dominant Metabolite Diphenyl Phosphate Cao J; Lei Y; Jiang X; Kannan K; Li M Environ Sci Technol; 2024 Sep; 58(35):15486-15496. PubMed ID: 39167085 [TBL] [Abstract][Full Text] [Related]
9. Identification and Toxicity Prediction of Biotransformation Molecules of Organophosphate Flame Retardants by Microbial Reactions in a Wastewater Treatment Plant. Choi Y; Kim SD Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065337 [TBL] [Abstract][Full Text] [Related]
10. Levels of Urinary Metabolites of Organophosphate Flame Retardants, TDCIPP, and TPHP, in Pregnant Women in Shanghai. Feng L; Ouyang F; Liu L; Wang X; Wang X; Li YJ; Murtha A; Shen H; Zhang J; Zhang JJ J Environ Public Health; 2016; 2016():9416054. PubMed ID: 28115951 [TBL] [Abstract][Full Text] [Related]
11. Untargeted metabolomics reveals transformation pathways and metabolic response of the earthworm Perionyx excavatus after exposure to triphenyl phosphate. Wang L; Huang X; Laserna AKC; Li SFY Sci Rep; 2018 Nov; 8(1):16440. PubMed ID: 30401822 [TBL] [Abstract][Full Text] [Related]
12. In vitro biotransformation of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate by mouse liver microsomes: Kinetics and key CYP isoforms. Chen MH; Zhang SH; Jia SM; Wang LJ; Ma WL Chemosphere; 2022 Feb; 288(Pt 1):132504. PubMed ID: 34627810 [TBL] [Abstract][Full Text] [Related]
13. Chronic toxicity evaluation of the flame retardant tris (2-butoxyethyl) phosphate (TBOEP) using Daphnia magna transcriptomic response. Giraudo M; Douville M; Houde M Chemosphere; 2015 Aug; 132():159-65. PubMed ID: 25855008 [TBL] [Abstract][Full Text] [Related]
14. Neurodevelopmental toxicity of organophosphate flame retardant triphenyl phosphate (TPhP) on zebrafish (Danio rerio) at different life stages. Zhang Q; Zheng S; Shi X; Luo C; Huang W; Lin H; Peng J; Tan W; Wu K Environ Int; 2023 Feb; 172():107745. PubMed ID: 36657258 [TBL] [Abstract][Full Text] [Related]
15. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems: Kinetics, pathway and degradation mechanisms. Hou R; Luo X; Liu C; Zhou L; Wen J; Yuan Y Environ Pollut; 2019 Nov; 254(Pt A):113040. PubMed ID: 31421579 [TBL] [Abstract][Full Text] [Related]
16. Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure. Su G; Letcher RJ; Yu H; Gooden DM; Stapleton HM Chemosphere; 2016 Apr; 149():314-9. PubMed ID: 26874059 [TBL] [Abstract][Full Text] [Related]
17. Hippocampal proteomic analysis reveals the disturbance of synaptogenesis and neurotransmission induced by developmental exposure to organophosphate flame retardant triphenyl phosphate. Zhong X; Yu Y; Wang C; Zhu Q; Wu J; Ke W; Ji D; Niu C; Yang X; Wei Y J Hazard Mater; 2021 Feb; 404(Pt B):124111. PubMed ID: 33189059 [TBL] [Abstract][Full Text] [Related]
18. First insight into human extrahepatic metabolism of flame retardants: Biotransformation of EH-TBB and Firemaster-550 components by human skin subcellular fractions. Abdallah MA; Nguyen KH; Moehring T; Harrad S Chemosphere; 2019 Jul; 227():1-8. PubMed ID: 30981098 [TBL] [Abstract][Full Text] [Related]
19. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. Su G; Crump D; Letcher RJ; Kennedy SW Environ Sci Technol; 2014 Nov; 48(22):13511-9. PubMed ID: 25350880 [TBL] [Abstract][Full Text] [Related]
20. In vitro metabolic activation of triphenyl phosphate leading to the formation of glutathione conjugates by rat liver microsomes. Chu S; Letcher RJ Chemosphere; 2019 Dec; 237():124474. PubMed ID: 31377596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]