These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 31791841)
61. Real-Time Tracking of Electrical Signals and an Accurate Quantification of Chemical Signals with Long-Term Stability in the Live Brain. Liu Y; Liu Z; Tian Y Acc Chem Res; 2022 Oct; 55(19):2821-2832. PubMed ID: 36074539 [TBL] [Abstract][Full Text] [Related]
62. Improved methods for construction of carbon fibre electrodes for extracellular spike recording. Millar J; Pelling CW J Neurosci Methods; 2001 Sep; 110(1-2):1-8. PubMed ID: 11564518 [TBL] [Abstract][Full Text] [Related]
63. Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue. Zhang Y; Chi K; Xiao J; Xu Y; Zhao A; Xu Y; Sun Y; Xiao F; Wang S Biosens Bioelectron; 2020 Feb; 150():111924. PubMed ID: 31818755 [TBL] [Abstract][Full Text] [Related]
64. Recent Progress on Transparent Microelectrode-Based Soft Bioelectronic Devices for Neuroscience and Cardiac Research. Lu L ACS Appl Bio Mater; 2023 May; 6(5):1701-1719. PubMed ID: 37076978 [TBL] [Abstract][Full Text] [Related]
65. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells. Zhang Y; Xiao J; Sun Y; Wang L; Dong X; Ren J; He W; Xiao F Biosens Bioelectron; 2018 Feb; 100():453-461. PubMed ID: 28963962 [TBL] [Abstract][Full Text] [Related]
66. Neural stimulation with a carbon nanotube microelectrode array. Wang K; Fishman HA; Dai H; Harris JS Nano Lett; 2006 Sep; 6(9):2043-8. PubMed ID: 16968023 [TBL] [Abstract][Full Text] [Related]
67. 3D Diamond Electrode Array for High-Acuity Stimulation in Neural Tissue. Stamp MEM; Tong W; Ganesan K; Prawer S; Ibbotson MR; Garrett DJ ACS Appl Bio Mater; 2020 Mar; 3(3):1544-1552. PubMed ID: 35021645 [TBL] [Abstract][Full Text] [Related]
68. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. Nguyen-Vu TD; Chen H; Cassell AM; Andrews RJ; Meyyappan M; Li J IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1121-8. PubMed ID: 17554831 [TBL] [Abstract][Full Text] [Related]
69. Magnesium-based biodegradable microelectrodes for neural recording. Zhang C; Wen TH; Razak KA; Lin J; Xu C; Seo C; Villafana E; Jimenez H; Liu H Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110614. PubMed ID: 32204062 [TBL] [Abstract][Full Text] [Related]
70. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Suzuki A; Ivandini TA; Yoshimi K; Fujishima A; Oyama G; Nakazato T; Hattori N; Kitazawa S; Einaga Y Anal Chem; 2007 Nov; 79(22):8608-15. PubMed ID: 17918970 [TBL] [Abstract][Full Text] [Related]
71. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells. Abdurhman AA; Zhang Y; Zhang G; Wang S Anal Bioanal Chem; 2015 Oct; 407(26):8129-36. PubMed ID: 26359235 [TBL] [Abstract][Full Text] [Related]
72. Soft and MRI Compatible Neural Electrodes from Carbon Nanotube Fibers. Lu L; Fu X; Liew Y; Zhang Y; Zhao S; Xu Z; Zhao J; Li D; Li Q; Stanley GB; Duan X Nano Lett; 2019 Mar; 19(3):1577-1586. PubMed ID: 30798604 [TBL] [Abstract][Full Text] [Related]
73. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
75. Nanotunnels within Poly(3,4-ethylenedioxythiophene)-Carbon Nanotube Composite for Highly Sensitive Neural Interfacing. Chen N; Luo B; Patil AC; Wang J; Gammad GGL; Yi Z; Liu X; Yen SC; Ramakrishna S; Thakor NV ACS Nano; 2020 Jul; 14(7):8059-8073. PubMed ID: 32579337 [TBL] [Abstract][Full Text] [Related]
76. Carbon Fiber Electrodes for in Vivo Spinal Cord Recordings. Cetinkaya E; Gok S; Sahin M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5069-5072. PubMed ID: 30441480 [TBL] [Abstract][Full Text] [Related]
77. A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes. Zhao X; Lu X; Tze WT; Wang P Biosens Bioelectron; 2010 Jun; 25(10):2343-50. PubMed ID: 20418089 [TBL] [Abstract][Full Text] [Related]
78. Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex. Black BJ; Kanneganti A; Joshi-Imre A; Rihani R; Chakraborty B; Abbott J; Pancrazio JJ; Cogan SF J Neurophysiol; 2018 Oct; 120(4):2083-2090. PubMed ID: 30020844 [TBL] [Abstract][Full Text] [Related]
79. Soft, Multifunctional MXene-Coated Fiber Microelectrodes for Biointerfacing. Bi L; Garg R; Noriega N; Wang RJ; Kim H; Vorotilo K; Burrell JC; Shuck CE; Vitale F; Patel BA; Gogotsi Y ACS Nano; 2024 Aug; 18(34):23217-23231. PubMed ID: 39141004 [TBL] [Abstract][Full Text] [Related]
80. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity. Viet NX; Kishimoto S; Ohno Y ACS Appl Mater Interfaces; 2019 Feb; 11(6):6389-6395. PubMed ID: 30672689 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]