BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31791874)

  • 21. An optofluidic metasurface for lateral flow-through detection of breast cancer biomarker.
    Wang Y; Ali MA; Chow EKC; Dong L; Lu M
    Biosens Bioelectron; 2018 Jun; 107():224-229. PubMed ID: 29475186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection.
    López-Muñoz GA; Estevez MC; Peláez-Gutierrez EC; Homs-Corbera A; García-Hernandez MC; Imbaud JI; Lechuga LM
    Biosens Bioelectron; 2017 Oct; 96():260-267. PubMed ID: 28501746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A label-free optical sensor based on nanoporous gold arrays for the detection of oligodeoxynucleotides.
    Feng J; Zhao W; Su B; Wu J
    Biosens Bioelectron; 2011 Dec; 30(1):21-7. PubMed ID: 21925859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing.
    Jia P; Yang J
    Nanoscale; 2014 Aug; 6(15):8836-43. PubMed ID: 24956134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors.
    Kim A; Ah CS; Park CW; Yang JH; Kim T; Ahn CG; Park SH; Sung GY
    Biosens Bioelectron; 2010 Mar; 25(7):1767-73. PubMed ID: 20093001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A sandwich-type amperometric immunosensor fabricated by Au@Pd NDs/Fe
    Pei F; Wang P; Ma E; Yu H; Gao C; Yin H; Li Y; Liu Q; Dong Y
    Biosens Bioelectron; 2018 Dec; 122():231-238. PubMed ID: 30267981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-resonant plasmonic nanodome arrays for label-free biosensing applications.
    Choi CJ; Semancik S
    Nanoscale; 2013 Sep; 5(17):8138-45. PubMed ID: 23884400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance.
    Jia P; Jiang H; Sabarinathan J; Yang J
    Nanotechnology; 2013 May; 24(19):195501. PubMed ID: 23579785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen.
    Rizwan M; Elma S; Lim SA; Ahmed MU
    Biosens Bioelectron; 2018 Jun; 107():211-217. PubMed ID: 29471282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating.
    Binfeng Y; Guohua H; Ruohu Z; Yiping C
    Opt Express; 2014 Nov; 22(23):28662-70. PubMed ID: 25402107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible terahertz metamaterial biosensor for label-free sensing of serum tumor marker modified on a non-metal area.
    Fang W; Ma Z; Lv X; Liu J; Pei W; Geng Z
    Opt Express; 2022 May; 30(10):16630-16643. PubMed ID: 36221501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography.
    Cattoni A; Ghenuche P; Haghiri-Gosnet AM; Decanini D; Chen J; Pelouard JL; Collin S
    Nano Lett; 2011 Sep; 11(9):3557-63. PubMed ID: 21805967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography.
    Lee SW; Lee KS; Ahn J; Lee JJ; Kim MG; Shin YB
    ACS Nano; 2011 Feb; 5(2):897-904. PubMed ID: 21222487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice.
    Zhao M; Li H; Liu W; Guo Y; Chu W
    Biosens Bioelectron; 2016 May; 79():581-8. PubMed ID: 26749100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic vertical dimer arrays as elements for biosensing.
    Horrer A; Krieg K; Freudenberger K; Rau S; Leidner L; Gauglitz G; Kern DP; Fleischer M
    Anal Bioanal Chem; 2015 Nov; 407(27):8225-31. PubMed ID: 26345439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dielectric metasurfaces for next-generation optical biosensing: a comparison with plasmonic sensing.
    Chung T; Wang H; Cai H
    Nanotechnology; 2023 Jul; 34(40):. PubMed ID: 37352839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized Immobilization of Biomolecules on Nonspherical Gold Nanostructures for Efficient Localized Surface Plasmon Resonance Biosensing.
    Garifullina A; Shen AQ
    Anal Chem; 2019 Dec; 91(23):15090-15098. PubMed ID: 31692333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers.
    Radha Shanmugam N; Muthukumar S; Chaudhry S; Anguiano J; Prasad S
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):764-772. PubMed ID: 27818043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional nanostructured plasmonic materials.
    Yao J; Le AP; Gray SK; Moore JS; Rogers JA; Nuzzo RG
    Adv Mater; 2010 Mar; 22(10):1102-10. PubMed ID: 20401934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.