These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 31792)
21. Effect of wheat germ agglutinin on the viscoelastic properties of erythrocyte membrane. Smith L; Hochmuth RM J Cell Biol; 1982 Jul; 94(1):7-11. PubMed ID: 6896878 [TBL] [Abstract][Full Text] [Related]
22. Spectrin properties and the elasticity of the red blood cell membrane skeleton. Hansen J; Skalak R; Chien S; Hoger A Biorheology; 1997; 34(4-5):327-48. PubMed ID: 9578807 [TBL] [Abstract][Full Text] [Related]
23. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation. Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642 [TBL] [Abstract][Full Text] [Related]
24. [Effects of the alterations of membrane shear elastic modulus and viscosity on the deformation and orientation of RBCs]. Xie L; Yang H; Yao W; Liu D; Zeng Z; Ka W; Sun D; Wen Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):218-22, 226. PubMed ID: 11450538 [TBL] [Abstract][Full Text] [Related]
25. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation. Dong C; Chadwick RS; Schechter AN Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913 [TBL] [Abstract][Full Text] [Related]
26. Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes. Linderkamp O; Friederichs E; Meiselman HJ Pediatr Res; 1993 Nov; 34(5):688-93. PubMed ID: 8284111 [TBL] [Abstract][Full Text] [Related]
27. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties. Secomb TW; Hsu R Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246 [TBL] [Abstract][Full Text] [Related]
28. Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging. Nash GB; Meiselman HJ Biophys J; 1983 Jul; 43(1):63-73. PubMed ID: 6882863 [TBL] [Abstract][Full Text] [Related]
29. The single erythrocyte rigidometer (SER) as a reference for RBC deformability. Kiesewetter H; Dauer U; Teitel P; Schmid-Schönbein H; Trapp R Biorheology; 1982; 19(6):737-53. PubMed ID: 7184522 [TBL] [Abstract][Full Text] [Related]
30. What is red cell deformability? Schmid-Schönbein H; Gaehtgens P Scand J Clin Lab Invest Suppl; 1981; 156():13-26. PubMed ID: 6948373 [TBL] [Abstract][Full Text] [Related]
31. Thermoelasticity of red blood cell membrane. Waugh R; Evans EA Biophys J; 1979 Apr; 26(1):115-31. PubMed ID: 262408 [TBL] [Abstract][Full Text] [Related]
32. Structural determinants of the rigidity of the red cell membrane. Nash GB; Gratzer WB Biorheology; 1993; 30(5-6):397-407. PubMed ID: 8186406 [TBL] [Abstract][Full Text] [Related]
33. Temperature dependence of the viscoelastic recovery of red cell membrane. Hochmuth RM; Buxbaum KL; Evans EA Biophys J; 1980 Jan; 29(1):177-82. PubMed ID: 7260246 [TBL] [Abstract][Full Text] [Related]
34. Effects of intracellular Ca2+ and proteolytic digestion of the membrane skeleton on the mechanical properties of the red blood cell membrane. Shields M; La Celle P; Waugh RE; Scholz M; Peters R; Passow H Biochim Biophys Acta; 1987 Nov; 905(1):181-94. PubMed ID: 2445380 [TBL] [Abstract][Full Text] [Related]
36. [Importance of pH- and osmolarity-dependent changes in deformability- determining factors on the filterability of human erythrocytes]. Kucera W; Meier W; Lerche D; Paulitschke M Biomed Biochim Acta; 1984; 43(3):337-48. PubMed ID: 6743306 [TBL] [Abstract][Full Text] [Related]
37. Spectrin, red cell shape and deformability. II. The antagonistic action of spectrin and sialic acid residues in determining membrane curvature in genetic spectrin deficiency in mice. Schmid-Schönbein H; Heidtmann H; Grebe R Blut; 1986 Mar; 52(3):149-64. PubMed ID: 3633744 [TBL] [Abstract][Full Text] [Related]
38. The spectrin membrane skeleton of normal and abnormal human erythrocytes: a review. Goodman SR; Shiffer K Am J Physiol; 1983 Mar; 244(3):C121-41. PubMed ID: 6338732 [TBL] [Abstract][Full Text] [Related]
39. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential. Hladky SB; Rink TJ J Physiol; 1976 Dec; 263(2):287-319. PubMed ID: 14255 [TBL] [Abstract][Full Text] [Related]
40. Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells. Rochal SB; Lorman VL Phys Rev Lett; 2006 Jun; 96(24):248102. PubMed ID: 16907283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]