These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 31792064)

  • 1. Reprogramming: identifying the mechanisms that safeguard cell identity.
    Brumbaugh J; Di Stefano B; Hochedlinger K
    Development; 2019 Dec; 146(23):. PubMed ID: 31792064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic reprogramming in cancer.
    Suvà ML; Riggi N; Bernstein BE
    Science; 2013 Mar; 339(6127):1567-70. PubMed ID: 23539597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SUMO Safeguards Somatic and Pluripotent Cell Identities by Enforcing Distinct Chromatin States.
    Cossec JC; Theurillat I; Chica C; Búa Aguín S; Gaume X; Andrieux A; Iturbide A; Jouvion G; Li H; Bossis G; Seeler JS; Torres-Padilla ME; Dejean A
    Cell Stem Cell; 2018 Nov; 23(5):742-757.e8. PubMed ID: 30401455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?
    Yilmazer A; de Lázaro I; Taheri H
    Cancer Lett; 2015 Dec; 369(1):1-8. PubMed ID: 26276716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic memory in reprogramming.
    Hörmanseder E
    Curr Opin Genet Dev; 2021 Oct; 70():24-31. PubMed ID: 34058535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallels between artificial reprogramming and the biogenesis of cancer stem cells: Involvement of lncRNAs.
    Rasmussen TP
    Semin Cancer Biol; 2019 Aug; 57():36-44. PubMed ID: 30273656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking Pluripotency Reprogramming and Cancer.
    Iglesias JM; Gumuzio J; Martin AG
    Stem Cells Transl Med; 2017 Feb; 6(2):335-339. PubMed ID: 28191771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks.
    Morris SA
    Development; 2016 Aug; 143(15):2696-705. PubMed ID: 27486230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging roles of the histone chaperone CAF-1 in cellular plasticity.
    Cheloufi S; Hochedlinger K
    Curr Opin Genet Dev; 2017 Oct; 46():83-94. PubMed ID: 28692904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient and Permanent Reconfiguration of Chromatin and Transcription Factor Occupancy Drive Reprogramming.
    Knaupp AS; Buckberry S; Pflueger J; Lim SM; Ford E; Larcombe MR; Rossello FJ; de Mendoza A; Alaei S; Firas J; Holmes ML; Nair SS; Clark SJ; Nefzger CM; Lister R; Polo JM
    Cell Stem Cell; 2017 Dec; 21(6):834-845.e6. PubMed ID: 29220667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay of chromatin and transcription factors during cell fate transitions in development and reprogramming.
    Peñalosa-Ruiz G; Bright AR; Mulder KW; Veenstra GJC
    Biochim Biophys Acta Gene Regul Mech; 2019 Sep; 1862(9):194407. PubMed ID: 31356991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions.
    Jeter CR; Yang T; Wang J; Chao HP; Tang DG
    Stem Cells; 2015 Aug; 33(8):2381-90. PubMed ID: 25821200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumoral reprogramming: Plasticity takes a walk on the wild side.
    Campos-Sánchez E; Cobaleda C
    Biochim Biophys Acta; 2015 Apr; 1849(4):436-47. PubMed ID: 25038581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FACT Sets a Barrier for Cell Fate Reprogramming in Caenorhabditis elegans and Human Cells.
    Kolundzic E; Ofenbauer A; Bulut SI; Uyar B; Baytek G; Sommermeier A; Seelk S; He M; Hirsekorn A; Vucicevic D; Akalin A; Diecke S; Lacadie SA; Tursun B
    Dev Cell; 2018 Sep; 46(5):611-626.e12. PubMed ID: 30078731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering cell identity: establishing new gene regulatory and chromatin landscapes.
    Guo C; Morris SA
    Curr Opin Genet Dev; 2017 Oct; 46():50-57. PubMed ID: 28667865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pioneer Transcription Factors in Normal Development and in Carcinogenesis].
    Kuzmich AI; Tyulkina DV; Vinogradova TV; Sverdlov ED
    Bioorg Khim; 2015; 41(6):636-43. PubMed ID: 27125016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Master Transcription Regulators Specifying Cell-Lineage Fates in Development As Possible Therapeutic Targets in Oncology].
    Kondratyeva LG; Vinogradova TV; Chernov IP; Sverdlov ED
    Genetika; 2015 Nov; 51(11):1221-33. PubMed ID: 26845852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
    Chronis C; Fiziev P; Papp B; Butz S; Bonora G; Sabri S; Ernst J; Plath K
    Cell; 2017 Jan; 168(3):442-459.e20. PubMed ID: 28111071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of Germ Cells to Somatic Cell Types in
    Ul Fatima N; Tursun B
    J Dev Biol; 2020 Oct; 8(4):. PubMed ID: 33036439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype.
    Hiew MSY; Cheng HP; Huang CJ; Chong KY; Cheong SK; Choo KB; Kamarul T
    J Biomed Sci; 2018 Jul; 25(1):57. PubMed ID: 30025541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.