These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31792155)

  • 1. BP Fluctuations and the Real-Time Dynamics of Renal Blood Flow Responses in Conscious Rats.
    Bidani AK; Polichnowski AJ; Licea-Vargas H; Long J; Kliethermes S; Williamson GA; Griffin KA
    J Am Soc Nephrol; 2020 Feb; 31(2):324-336. PubMed ID: 31792155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Autoregulation of kidney circulation, glomerular filtration rate and plasma renin activity in spontaneously hypertensive rats and normotensive Wistar rats].
    Wende P; Strauch M; Unger T; Gretz N; Rohmeiss P
    Med Klin (Munich); 1993 Apr; 88(4):207-11. PubMed ID: 8492775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Autoregulation of renal blood flow and blood pressure variability in the conscious rat].
    Pires SL; Barrès C; Sassard J; Julien C
    Arch Mal Coeur Vaiss; 2001 Aug; 94(8):818-21. PubMed ID: 11575210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired autoregulation of renal blood flow in the fawn-hooded rat.
    Van Dokkum RP; Alonso-Galicia M; Provoost AP; Jacob HJ; Roman RJ
    Am J Physiol; 1999 Jan; 276(1):R189-96. PubMed ID: 9887194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic autoregulation and renal injury in Dahl rats.
    Karlsen FM; Andersen CB; Leyssac PP; Holstein-Rathlou NH
    Hypertension; 1997 Oct; 30(4):975-83. PubMed ID: 9336403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal blood flow dynamics and arterial pressure lability in the conscious rat.
    Pires SL; Barrès C; Sassard J; Julien C
    Hypertension; 2001 Jul; 38(1):147-52. PubMed ID: 11463776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous renal blood flow autoregulation curves in conscious sinoaortic baroreceptor-denervated rats.
    Pires SL; Julien C; Chapuis B; Sassard J; Barrès C
    Am J Physiol Renal Physiol; 2002 Jan; 282(1):F51-8. PubMed ID: 11739112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
    Just A; Wittmann U; Ehmke H; Kirchheim HR
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):275-90. PubMed ID: 9481688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of dynamics in renal autoregulation using volterra models.
    Hacioğlu R; Williamson GA; Abu-Amarah I; Griffin KA; Bidani AK
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2166-76. PubMed ID: 17073321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low protein diet mediated renoprotection in remnant kidneys: Renal autoregulatory versus hypertrophic mechanisms.
    Griffin KA; Picken M; Giobbie-Hurder A; Bidani AK
    Kidney Int; 2003 Feb; 63(2):607-16. PubMed ID: 12631125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms.
    Loutzenhiser R; Griffin K; Williamson G; Bidani A
    Am J Physiol Regul Integr Comp Physiol; 2006 May; 290(5):R1153-67. PubMed ID: 16603656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired renal blood flow and cortical pressure autoregulation in contralateral kidneys of Goldblatt hypertensive rats.
    Ploth DW; Roy RN; Huang WC; Navar LG
    Hypertension; 1981; 3(1):67-74. PubMed ID: 7203607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats.
    Wang X; Cupples WA
    Can J Physiol Pharmacol; 2001 Mar; 79(3):238-45. PubMed ID: 11294600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Step" vs. "dynamic" autoregulation: implications for susceptibility to hypertensive injury.
    Bidani AK; Hacioglu R; Abu-Amarah I; Williamson GA; Loutzenhiser R; Griffin KA
    Am J Physiol Renal Physiol; 2003 Jul; 285(1):F113-20. PubMed ID: 12631551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal ablation acutely transforms 'benign' hypertension to 'malignant' nephrosclerosis in hypertensive rats.
    Bidani AK; Griffin KA; Plott W; Schwartz MM
    Hypertension; 1994 Sep; 24(3):309-16. PubMed ID: 8082937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.
    A Mitrou NG; Cupples WA
    Curr Vasc Pharmacol; 2014; 12(6):801-9. PubMed ID: 24066933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent autoregulation of renal blood flow in conscious rats.
    Flemming B; Arenz N; Seeliger E; Wronski T; Steer K; Persson PB
    J Am Soc Nephrol; 2001 Nov; 12(11):2253-2262. PubMed ID: 11675401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class differences in the effects of calcium channel blockers in the rat remnant kidney model.
    Griffin KA; Picken MM; Bakris GL; Bidani AK
    Kidney Int; 1999 May; 55(5):1849-60. PubMed ID: 10231447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of renal blood flow autoregulation.
    Burke M; Pabbidi MR; Farley J; Roman RJ
    Curr Vasc Pharmacol; 2014; 12(6):845-58. PubMed ID: 24066938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.