BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31792282)

  • 1. Nucleic acids enrichment of fungal pathogens to study host-pathogen interactions.
    Rodríguez A; Guillemyn B; Coucke P; Vaneechoutte M
    Sci Rep; 2019 Dec; 9(1):18037. PubMed ID: 31792282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site.
    Andes D; Lepak A; Pitula A; Marchillo K; Clark J
    J Infect Dis; 2005 Sep; 192(5):893-900. PubMed ID: 16088840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional Profiling of Candida albicans in the Host.
    Gunsalus KT; Kumamoto CA
    Methods Mol Biol; 2016; 1356():17-29. PubMed ID: 26519062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans.
    Amorim-Vaz S; Tran Vdu T; Pradervand S; Pagni M; Coste AT; Sanglard D
    mBio; 2015 Sep; 6(5):e00942-15. PubMed ID: 26396240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the efficiency of different cell lysis methods and different commercial methods for RNA extraction from Candida albicans stored in RNAlater.
    Rodríguez A; Vaneechoutte M
    BMC Microbiol; 2019 May; 19(1):94. PubMed ID: 31088364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and amplification of fungal RNA for microarray analysis from host samples.
    Lüttich A; Brunke S; Hube B
    Methods Mol Biol; 2012; 845():411-21. PubMed ID: 22328391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Candida albicans mRNA in archival histopathology samples by reverse transcription-PCR.
    Beggs KT; Holmes AR; Cannon RD; Rich AM
    J Clin Microbiol; 2004 May; 42(5):2275-8. PubMed ID: 15131211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections.
    Loonen AJ; Bos MP; van Meerbergen B; Neerken S; Catsburg A; Dobbelaer I; Penterman R; Maertens G; van de Wiel P; Savelkoul P; van den Brule AJ
    PLoS One; 2013; 8(8):e72349. PubMed ID: 23977288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of DNA extraction methods used to detect bacterial and yeast DNA from spiked whole blood by real-time PCR.
    Dalla-Costa LM; Morello LG; Conte D; Pereira LA; Palmeiro JK; Ambrosio A; Cardozo D; Krieger MA; Raboni SM
    J Microbiol Methods; 2017 Sep; 140():61-66. PubMed ID: 28669799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of resistance to fluconazole in Candida albicans clinical isolates from Iranian HIV-infected patients with oropharyngeal candidiasis.
    Salari S; Khosravi AR; Mousavi SA; Nikbakht-Brojeni GH
    J Mycol Med; 2016 Mar; 26(1):35-41. PubMed ID: 26627124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of the fungal pathogen Candida albicans with the host.
    Rupp S
    Future Microbiol; 2007 Apr; 2(2):141-51. PubMed ID: 17661651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR.
    Metwally L; Fairley DJ; Coyle PV; Hay RJ; Hedderwick S; McCloskey B; O'Neill HJ; Webb CH; Elbaz W; McMullan R
    J Med Microbiol; 2008 Mar; 57(Pt 3):296-303. PubMed ID: 18287291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR.
    Fredricks DN; Smith C; Meier A
    J Clin Microbiol; 2005 Oct; 43(10):5122-8. PubMed ID: 16207973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quest to find good primers for gene expression analysis of Candida albicans from clinical samples.
    Alonso GC; Pavarina AC; Sousa TV; Klein MI
    J Microbiol Methods; 2018 Apr; 147():1-13. PubMed ID: 29454005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of deoxyribonucleic acid microarray analysis to the study of azole antifungal resistance in Candida albicans.
    Barker KS; Rogers PD
    Methods Mol Med; 2005; 118():45-56. PubMed ID: 15888934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans.
    Thewes S; Moran GP; Magee BB; Schaller M; Sullivan DJ; Hube B
    BMC Microbiol; 2008 Oct; 8():187. PubMed ID: 18950481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of quantitative real-time PCR to study the kinetics of extracellular DNA released from Candida albicans, with implications for diagnosis of invasive Candidiasis.
    Kasai M; Francesconi A; Petraitiene R; Petraitis V; Kelaher AM; Kim HS; Meletiadis J; Sein T; Bacher J; Walsh TJ
    J Clin Microbiol; 2006 Jan; 44(1):143-50. PubMed ID: 16390962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Up-regulation of two Candida albicans genes in the rat model of oral candidiasis detected by differential display.
    Zhao XJ; Newsome JT; Cihlar RL
    Microb Pathog; 1998 Sep; 25(3):121-9. PubMed ID: 9790871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo imaging of disseminated murine Candida albicans infection reveals unexpected host sites of fungal persistence during antifungal therapy.
    Jacobsen ID; Lüttich A; Kurzai O; Hube B; Brock M
    J Antimicrob Chemother; 2014 Oct; 69(10):2785-96. PubMed ID: 24951534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.
    Hebecker B; Vlaic S; Conrad T; Bauer M; Brunke S; Kapitan M; Linde J; Hube B; Jacobsen ID
    Sci Rep; 2016 Nov; 6():36055. PubMed ID: 27808111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.