These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31792307)

  • 1. The Effect of pH on Antibiotic Efficacy against Coxiella burnetii in Axenic Media.
    Smith CB; Evavold C; Kersh GJ
    Sci Rep; 2019 Dec; 9(1):18132. PubMed ID: 31792307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of axenic media to determine antibiotic efficacy against coxiella burnetii.
    Clay KA; Hartley MG; Russell P; Norville IH
    Int J Antimicrob Agents; 2018 May; 51(5):806-808. PubMed ID: 28802854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxychloroquine susceptibility determination of Coxiella burnetii in human embryonic lung (HEL) fibroblast cells.
    Angelakis E; Khalil JB; Le Bideau M; Perreal C; La Scola B; Raoult D
    Int J Antimicrob Agents; 2017 Jul; 50(1):106-109. PubMed ID: 28478211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axenic growth of Coxiella burnetii.
    Omsland A
    Adv Exp Med Biol; 2012; 984():215-29. PubMed ID: 22711634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Axenic Culture Tools to Study Coxiella burnetii.
    Sanchez SE; Vallejo-Esquerra E; Omsland A
    Curr Protoc Microbiol; 2018 Aug; 50(1):e52. PubMed ID: 29927105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid A Has Significance for Optimal Growth of
    Wang T; Yu Y; Liang X; Luo S; He Z; Sun Z; Jiang Y; Omsland A; Zhou P; Song L
    Front Cell Infect Microbiol; 2018; 8():192. PubMed ID: 29938202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of rifapentine and other rifamycins against
    Miller HK; Kersh GJ
    Microbiol Spectr; 2024 Jul; 12(7):e0103424. PubMed ID: 38864598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii.
    Omsland A; Cockrell DC; Fischer ER; Heinzen RA
    J Bacteriol; 2008 May; 190(9):3203-12. PubMed ID: 18310349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriostatic and bactericidal activities of moxifloxacin against Coxiella burnetii.
    Rolain JM; Maurin M; Raoult D
    Antimicrob Agents Chemother; 2001 Jan; 45(1):301-2. PubMed ID: 11120982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phagolysosomal alkalinization and the bactericidal effect of antibiotics: the Coxiella burnetii paradigm.
    Maurin M; Benoliel AM; Bongrand P; Raoult D
    J Infect Dis; 1992 Nov; 166(5):1097-102. PubMed ID: 1402021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells.
    Raoult D; Drancourt M; Vestris G
    Antimicrob Agents Chemother; 1990 Aug; 34(8):1512-4. PubMed ID: 2221859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro susceptibility of Coxiella burnetii to linezolid in comparison with its susceptibilities to quinolones, doxycycline, and clarithromycin.
    Gikas A; Spyridaki I; Scoulica E; Psaroulaki A; Tselentis Y
    Antimicrob Agents Chemother; 2001 Nov; 45(11):3276-8. PubMed ID: 11600400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between ratio of serum doxycycline concentration to MIC and rapid decline of antibody levels during treatment of Q fever endocarditis.
    Rolain JM; Boulos A; Mallet MN; Raoult D
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2673-6. PubMed ID: 15980335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriostatic and bactericidal activities of tigecycline against Coxiella burnetii and comparison with those of six other antibiotics.
    Spyridaki I; Psaroulaki A; Vranakis I; Tselentis Y; Gikas A
    Antimicrob Agents Chemother; 2009 Jun; 53(6):2690-2. PubMed ID: 19332671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Coxiella burnetii culture method for high-throughput assay to identify host-directed therapeutics.
    Miller CN; Khan M; Ahmed SA; Kota K; Panchal RG; Hale ML
    J Microbiol Methods; 2020 Feb; 169():105813. PubMed ID: 31862458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical and Nutritional Requirements for Axenic Replication Suggest Physiological Basis for
    Vallejo Esquerra E; Yang H; Sanchez SE; Omsland A
    Front Cell Infect Microbiol; 2017; 7():190. PubMed ID: 28620582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meso-tartrate inhibits intracellular replication of Coxiella burnetii, the causative agent of the zoonotic disease Q fever.
    Bitew MA; Wawegama NK; Newton HJ; Sansom FM
    Pathog Dis; 2019 Nov; 77(8):. PubMed ID: 31845968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis revealed the survival strategy of Coxiella burnetii to doxycycline exposure.
    Zuñiga-Navarrete F; Flores-Ramirez G; Danchenko M; Benada O; Skriba A; Skultety L
    J Proteomics; 2019 Sep; 208():103479. PubMed ID: 31394312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of telithromycin against thirteen new isolates of C. burnetii including three resistant to doxycycline.
    Rolain JM; Lambert F; Raoult D
    Ann N Y Acad Sci; 2005 Dec; 1063():252-6. PubMed ID: 16481522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility of intracellular Coxiella burnetii to antimicrobial peptides in mouse fibroblast cells.
    Unsworth NB; Dawson RM; Wade JD; Liu CQ
    Protein Pept Lett; 2014; 21(2):115-23. PubMed ID: 24364858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.