These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 31792785)
1. Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum. Wang X; Chen R; Wu Y; Wang D; Wei D Appl Biochem Biotechnol; 2020 Apr; 190(4):1553-1560. PubMed ID: 31792785 [TBL] [Abstract][Full Text] [Related]
2. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway. Song S; He J; Gao M; Huang Y; Cheng X; Su Z Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325 [TBL] [Abstract][Full Text] [Related]
3. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum. Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803 [TBL] [Abstract][Full Text] [Related]
4. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation. Su L; Shen Y; Xia M; Shang Z; Xu S; An X; Wang M J Ind Microbiol Biotechnol; 2018 Oct; 45(10):857-867. PubMed ID: 30073539 [TBL] [Abstract][Full Text] [Related]
6. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Zhang Y; Zhou X; Wang X; Wang L; Xia M; Luo J; Shen Y; Wang M Microb Cell Fact; 2020 Jan; 19(1):13. PubMed ID: 31992309 [TBL] [Abstract][Full Text] [Related]
7. Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp. Xu XW; Gao XQ; Feng JX; Wang XD; Wei DZ Lett Appl Microbiol; 2015 Jul; 61(1):63-8. PubMed ID: 25868395 [TBL] [Abstract][Full Text] [Related]
8. Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum. Xiong LB; Liu HH; Song XW; Meng XG; Liu XZ; Ji YQ; Wang FQ; Wei DZ J Biotechnol; 2020 Nov; 323():341-346. PubMed ID: 32976867 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Xiong LB; Liu HH; Zhao M; Liu YJ; Song L; Xie ZY; Xu YX; Wang FQ; Wei DZ Microb Cell Fact; 2020 Mar; 19(1):80. PubMed ID: 32228591 [TBL] [Abstract][Full Text] [Related]
10. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes. Xiong LB; Liu HH; Xu LQ; Sun WJ; Wang FQ; Wei DZ Microb Cell Fact; 2017 May; 16(1):89. PubMed ID: 28532497 [TBL] [Abstract][Full Text] [Related]
11. Cofactor engineering to regulate NAD Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539 [TBL] [Abstract][Full Text] [Related]
12. Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Wang H; Song S; Peng F; Yang F; Chen T; Li X; Cheng X; He Y; Huang Y; Su Z Microb Cell Fact; 2020 Oct; 19(1):187. PubMed ID: 33008397 [TBL] [Abstract][Full Text] [Related]
13. Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum. Zhu X; Wang X; Zhang J; Wang X Biotechnol J; 2024 Jan; 19(1):e2300439. PubMed ID: 38129322 [TBL] [Abstract][Full Text] [Related]
14. [Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization]. Ma Y; Wang X; Wang M; Li H; Shi J; Xu Z Sheng Wu Gong Cheng Xue Bao; 2017 Jul; 33(7):1198-1206. PubMed ID: 28869739 [TBL] [Abstract][Full Text] [Related]
15. Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum. Xiong LB; Liu HH; Xu LQ; Wei DZ; Wang FQ J Agric Food Chem; 2017 Jan; 65(3):626-631. PubMed ID: 28035826 [TBL] [Abstract][Full Text] [Related]
16. A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095. Shao M; Zhang X; Rao Z; Xu M; Yang T; Li H; Xu Z; Yang S J Ind Microbiol Biotechnol; 2016 May; 43(5):691-701. PubMed ID: 26886757 [TBL] [Abstract][Full Text] [Related]
17. Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD Zhou X; Zhang Y; Shen Y; Zhang X; Xu S; Shang Z; Xia M; Wang M Bioresour Technol; 2019 May; 279():209-217. PubMed ID: 30735930 [TBL] [Abstract][Full Text] [Related]
18. Efficient conversion of phytosterols into 4-androstene-3,17-dione and its C1,2-dehydrogenized and 9α-hydroxylated derivatives by engineered Mycobacteria. Li X; Chen T; Peng F; Song S; Yu J; Sidoine DN; Cheng X; Huang Y; He Y; Su Z Microb Cell Fact; 2021 Aug; 20(1):158. PubMed ID: 34399754 [TBL] [Abstract][Full Text] [Related]
19. Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics. Liu C; Shao M; Osire T; Xu Z; Rao Z J Biosci Bioeng; 2021 Mar; 131(3):264-270. PubMed ID: 33308966 [TBL] [Abstract][Full Text] [Related]