BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31792787)

  • 1. Carbon-Phosphorus Lyase-the State of the Art.
    Stosiek N; Talma M; Klimek-Ochab M
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1525-1552. PubMed ID: 31792787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation.
    Wanner BL; Metcalf WW
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):133-9. PubMed ID: 1335942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli.
    Yakovleva GM; Kim SK; Wanner BL
    Appl Microbiol Biotechnol; 1998 May; 49(5):573-8. PubMed ID: 9650256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediates in the transformation of phosphonates to phosphate by bacteria.
    Kamat SS; Williams HJ; Raushel FM
    Nature; 2011 Nov; 480(7378):570-3. PubMed ID: 22089136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation.
    Podzelinska K; He SM; Wathier M; Yakunin A; Proudfoot M; Hove-Jensen B; Zechel DL; Jia Z
    J Biol Chem; 2009 Jun; 284(25):17216-17226. PubMed ID: 19366688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes.
    Lee KS; Metcalf WW; Wanner BL
    J Bacteriol; 1992 Apr; 174(8):2501-10. PubMed ID: 1556070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
    White AK; Metcalf WW
    J Bacteriol; 2004 Jul; 186(14):4730-9. PubMed ID: 15231805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.
    Vera M; Pagliai F; Guiliani N; Jerez CA
    Appl Environ Microbiol; 2008 Mar; 74(6):1829-35. PubMed ID: 18203861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products.
    Parker GF; Higgins TP; Hawkes T; Robson RL
    J Bacteriol; 1999 Jan; 181(2):389-95. PubMed ID: 9882650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA' elements.
    Metcalf WW; Wanner BL
    J Bacteriol; 1993 Jun; 175(11):3430-42. PubMed ID: 8388873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi.
    Metcalf WW; Wanner BL
    J Bacteriol; 1991 Jan; 173(2):587-600. PubMed ID: 1846145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of PhnH: an essential component of carbon-phosphorus lyase in Escherichia coli.
    Adams MA; Luo Y; Hove-Jensen B; He SM; van Staalduinen LM; Zechel DL; Jia Z
    J Bacteriol; 2008 Feb; 190(3):1072-83. PubMed ID: 17993513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B.
    Chen CM; Ye QZ; Zhu ZM; Wanner BL; Walsh CT
    J Biol Chem; 1990 Mar; 265(8):4461-71. PubMed ID: 2155230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli.
    Hove-Jensen B; Rosenkrantz TJ; Zechel DL; Willemoës M
    J Bacteriol; 2010 Jan; 192(1):370-4. PubMed ID: 19854894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular genetics of carbon-phosphorus bond cleavage in bacteria.
    Wanner BL
    Biodegradation; 1994 Dec; 5(3-4):175-84. PubMed ID: 7765831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primer design to assess bacterial degradation of glyphosate and other phosphonates.
    Morales ME; Allegrini M; Basualdo J; Villamil MB; Zabaloy MC
    J Microbiol Methods; 2020 Feb; 169():105814. PubMed ID: 31866379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genes for phosphonate biodegradation in Escherichia coli.
    Wanner BL
    SAAS Bull Biochem Biotechnol; 1992 Jan; 5():1-6. PubMed ID: 1368181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway.
    Jochimsen B; Lolle S; McSorley FR; Nabi M; Stougaard J; Zechel DL; Hove-Jensen B
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11393-8. PubMed ID: 21705661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2.
    Jiang W; Metcalf WW; Lee KS; Wanner BL
    J Bacteriol; 1995 Nov; 177(22):6411-21. PubMed ID: 7592415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.