These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 31793168)
1. Climate change and the genetics of insecticide resistance. Pu J; Wang Z; Chung H Pest Manag Sci; 2020 Mar; 76(3):846-852. PubMed ID: 31793168 [TBL] [Abstract][Full Text] [Related]
2. Does Drought Increase the Risk of Insects Developing Behavioral Resistance to Systemic Insecticides? Khodaverdi H; Fowles T; Bick E; Nansen C J Econ Entomol; 2016 Oct; 109(5):2027-31. PubMed ID: 27551149 [TBL] [Abstract][Full Text] [Related]
3. The spread of resistance to imidacloprid is restricted by thermotolerance in natural populations of Drosophila melanogaster. Fournier-Level A; Good RT; Wilcox SA; Rane RV; Schiffer M; Chen W; Battlay P; Perry T; Batterham P; Hoffmann AA; Robin C Nat Ecol Evol; 2019 Apr; 3(4):647-656. PubMed ID: 30886368 [TBL] [Abstract][Full Text] [Related]
4. Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. Douris V; Denecke S; Van Leeuwen T; Bass C; Nauen R; Vontas J Pestic Biochem Physiol; 2020 Jul; 167():104595. PubMed ID: 32527434 [TBL] [Abstract][Full Text] [Related]
5. Harnessing model organisms to study insecticide resistance. Perry T; Batterham P Curr Opin Insect Sci; 2018 Jun; 27():61-67. PubMed ID: 30025636 [TBL] [Abstract][Full Text] [Related]
6. Behavioural response to combined insecticide and temperature stress in natural populations of Drosophila melanogaster. Fournier-Level A; Neumann-Mondlak A; Good RT; Green LM; Schmidt JM; Robin C J Evol Biol; 2016 May; 29(5):1030-44. PubMed ID: 26864706 [TBL] [Abstract][Full Text] [Related]
8. Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction. Perry T; Somers J; Yang YT; Batterham P Insect Biochem Mol Biol; 2015 Sep; 64():106-15. PubMed ID: 25747008 [TBL] [Abstract][Full Text] [Related]
9. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. Brevik K; Lindström L; McKay SD; Chen YH Curr Opin Insect Sci; 2018 Apr; 26():34-40. PubMed ID: 29764658 [TBL] [Abstract][Full Text] [Related]
10. Identifying circumstances under which high insecticide dose increases or decreases resistance selection. Helps JC; Paveley ND; van den Bosch F J Theor Biol; 2017 Sep; 428():153-167. PubMed ID: 28625474 [TBL] [Abstract][Full Text] [Related]
11. Molecular basis for insecticide-enhanced thermotolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera:Delphacidae). Ge LQ; Huang LJ; Yang GQ; Song QS; Stanley D; Gurr GM; Wu JC Mol Ecol; 2013 Nov; 22(22):5624-34. PubMed ID: 24303791 [TBL] [Abstract][Full Text] [Related]
12. Insecticide resistance and its molecular basis in urban insect pests. Naqqash MN; Gökçe A; Bakhsh A; Salim M Parasitol Res; 2016 Apr; 115(4):1363-73. PubMed ID: 26758450 [TBL] [Abstract][Full Text] [Related]
13. Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests. Mogilicherla K; Roy A Front Genet; 2022; 13():1044980. PubMed ID: 36685945 [TBL] [Abstract][Full Text] [Related]
14. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa. Gnankiné O; Bassolé IH; Chandre F; Glitho I; Akogbeto M; Dabiré RK; Martin T Acta Trop; 2013 Oct; 128(1):7-17. PubMed ID: 23792227 [TBL] [Abstract][Full Text] [Related]
15. The biology of insecticidal activity and resistance. Perry T; Batterham P; Daborn PJ Insect Biochem Mol Biol; 2011 Jul; 41(7):411-22. PubMed ID: 21426939 [TBL] [Abstract][Full Text] [Related]
16. Drosophila, Chitin and Insect Pest Management. Wang Y; Gao L; Moussian B Curr Pharm Des; 2020; 26(29):3546-3553. PubMed ID: 32693764 [TBL] [Abstract][Full Text] [Related]
17. Fitness effects for Ace insecticide resistance mutations are determined by ambient temperature. Langmüller AM; Nolte V; Galagedara R; Poupardin R; Dolezal M; Schlötterer C BMC Biol; 2020 Oct; 18(1):157. PubMed ID: 33121485 [TBL] [Abstract][Full Text] [Related]
18. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Pavlidi N; Vontas J; Van Leeuwen T Curr Opin Insect Sci; 2018 Jun; 27():97-102. PubMed ID: 30025642 [TBL] [Abstract][Full Text] [Related]
19. Insect pest control, approximate dynamic programming, and the management of the evolution of resistance. Hackett SC; Bonsall MB Ecol Appl; 2019 Mar; 29(2):e01851. PubMed ID: 30656770 [TBL] [Abstract][Full Text] [Related]
20. Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. Zhang Y; Cai T; Ren Z; Liu Y; Yuan M; Cai Y; Yu C; Shu R; He S; Li J; Wong ACN; Wan H ISME J; 2021 Dec; 15(12):3693-3703. PubMed ID: 34188180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]