BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3179342)

  • 1. Coordinates transformation and learning control for visually-guided voluntary movement with iteration: a Newton-like method in a function space.
    Kawato M; Isobe M; Maeda Y; Suzuki R
    Biol Cybern; 1988; 59(3):161-77. PubMed ID: 3179342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.
    Dornay M; Sanger TD
    Biol Cybern; 1993; 68(6):499-508. PubMed ID: 8324058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control of rotational kinematics within realistic vestibuloocular coordinate systems.
    Smith MA; Crawford JD
    J Neurophysiol; 1998 Nov; 80(5):2295-315. PubMed ID: 9819244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative manual control model of human operator.
    Arif M; Inooka H
    Biol Cybern; 1999 Nov; 81(5-6):445-55. PubMed ID: 10592019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual awareness and the cerebellum: possible role of decorrelation control.
    Dean P; Porrill J; Stone JV
    Prog Brain Res; 2004; 144():61-75. PubMed ID: 14650840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel model of motor learning capable of developing an optimal movement control law online from scratch.
    Shimansky YP; Kang T; He J
    Biol Cybern; 2004 Feb; 90(2):133-45. PubMed ID: 14999480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive Control for Multi-Joint Arm Movements Based on Virtual Trajectories.
    Uno Y; Suzuki T; Kagawa T
    Neural Comput; 2020 Nov; 32(11):2212-2236. PubMed ID: 32946713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational model of four regions of the cerebellum based on feedback-error learning.
    Kawato M; Gomi H
    Biol Cybern; 1992; 68(2):95-103. PubMed ID: 1486143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The control parameters used by the CNS to guide the hand depend on the visuo-motor task: evidence from visually guided pointing.
    Thaler L; Todd JT
    Neuroscience; 2009 Mar; 159(2):578-98. PubMed ID: 19174179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational theory for movement pattern recognition based on optimal movement pattern generation.
    Wada Y; Koike Y; Vatikiotis-Bateson E; Kawato M
    Biol Cybern; 1995 Jun; 73(1):15-25. PubMed ID: 7654846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in neuronal firing patterns in the process of motor command generation for the ocular following response.
    Takemura A; Inoue Y; Gomi H; Kawato M; Kawano K
    J Neurophysiol; 2001 Oct; 86(4):1750-63. PubMed ID: 11600636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.
    Haith A; Vijayakumar S
    Biol Cybern; 2009 Jan; 100(1):81-95. PubMed ID: 18941774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A learning network model of the neural integrator of the oculomotor system.
    Arnold DB; Robinson DA
    Biol Cybern; 1991; 64(6):447-54. PubMed ID: 1863658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.
    Shi H; Sun Y; Li J
    Comput Intell Neurosci; 2018; 2018():8535429. PubMed ID: 29666634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MODEM: a multi-agent hierarchical structure to model the human motor control system.
    Emadi Andani M; Bahrami F; Jabehdar Maralani P; Ijspeert AJ
    Biol Cybern; 2009 Dec; 101(5-6):361-77. PubMed ID: 19862548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.