These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31793669)

  • 1. Efficient Screening for Ternary Molecular Ionic Cocrystals Using a Complementary Mechanosynthesis and Computational Structure Prediction Approach.
    Shunnar AF; Dhokale B; Karothu DP; Bowskill DH; Sugden IJ; Hernandez HH; Naumov P; Mohamed S
    Chemistry; 2020 Apr; 26(21):4752-4765. PubMed ID: 31793669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpeedMixing: Rapid Tribochemical Synthesis and Discovery of Pharmaceutical Cocrystals without Milling or Grinding Media.
    Teoh Y; Ayoub G; Huskić I; Titi HM; Nickels CW; Herrmann B; Friščić T
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202206293. PubMed ID: 35894150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal Engineering of Ionic Cocrystals Sustained by Azolium···Azole Heterosynthons.
    Rahmani M; Kumar V; Bruno-Colmenarez J; Zaworotko MJ
    Pharmaceutics; 2022 Oct; 14(11):. PubMed ID: 36365138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanosynthesis of Higher-Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design*.
    Ng ZX; Tan D; Teo WL; León F; Shi X; Sim Y; Li Y; Ganguly R; Zhao Y; Mohamed S; García F
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17481-17490. PubMed ID: 33982390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the systematic crystallisation of molecular ionic cocrystals: insights from computed crystal form landscapes.
    Mohamed S; Alwan AA; Friščić T; Morris AJ; Arhangelskis M
    Faraday Discuss; 2018 Oct; 211(0):401-424. PubMed ID: 30058649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cocrystals, Salts, and Salt-Solvates of olanzapine; selection of coformers and improved solubility.
    Gong W; Mondal PK; Ahmadi S; Wu Y; Rohani S
    Int J Pharm; 2021 Oct; 608():121063. PubMed ID: 34481007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmaceutical cocrystals: along the path to improved medicines.
    Duggirala NK; Perry ML; Almarsson Ö; Zaworotko MJ
    Chem Commun (Camb); 2016 Jan; 52(4):640-55. PubMed ID: 26565650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cocrystallization of Active Pharmaceutical Ingredients Derived from Traditional Chinese Medicines.
    Guo H; Liu S
    Chem Pharm Bull (Tokyo); 2023; 71(5):326-333. PubMed ID: 37121683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular Synthon Promiscuity in Phosphoric Acid-Dihydrogen Phosphate Ionic Cocrystals.
    Haskins MM; Lusi M; Zaworotko MJ
    Cryst Growth Des; 2022 May; 22(5):3333-3342. PubMed ID: 35529065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal Engineering of Ionic Cocrystals Sustained by the Phenol-Phenolate Supramolecular Heterosynthon.
    Jin S; Sanii R; Song BQ; Zaworotko MJ
    Cryst Growth Des; 2022 Jul; 22(7):4582-4591. PubMed ID: 35935703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Lisbon Supramolecular Green Story: Mechanochemistry towards New Forms of Pharmaceuticals.
    Ferreira da Silva JL; Minas da Piedade MF; André V; Domingos S; Martins ICB; Duarte MT
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32545242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmaceutical Cocrystals of Ethenzamide: Molecular Structure Analysis Based on Vibrational Spectra and DFT Calculations.
    Wan M; Fang J; Xue J; Liu J; Qin J; Hong Z; Li J; Du Y
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cocrystal Synthesis through Crystal Structure Prediction.
    Abramov YA; Iuzzolino L; Jin Y; York G; Chen CH; Shultz CS; Yang Z; Chang C; Shi B; Zhou T; Greenwell C; Sekharan S; Lee AY
    Mol Pharm; 2023 Jul; 20(7):3380-3392. PubMed ID: 37279175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal engineering of ionic cocrystals comprising Na/K salts of hesperetin with hesperetin molecules and solubility modulation.
    Jin S; Haskins MM; Deng CH; Matos CRMO; Zaworotko MJ
    IUCrJ; 2023 May; 10(Pt 3):329-340. PubMed ID: 37079399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Supramolecular Interactions and Thermal Stability of Dapsone:Bipyridine Cocrystals by Combining Computational Chemistry with Experimentation.
    Racher F; Petrick TL; Braun DE
    Cryst Growth Des; 2023 Jun; 23(6):4638-4654. PubMed ID: 37304396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Screening of Coformers for Active Pharmaceutical Ingredient Cocrystallization.
    Sugden IJ; Braun DE; Bowskill DH; Adjiman CS; Pantelides CC
    Cryst Growth Des; 2022 Jul; 22(7):4513-4527. PubMed ID: 35915670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced methodologies for cocrystal synthesis.
    Douroumis D; Ross SA; Nokhodchi A
    Adv Drug Deliv Rev; 2017 Aug; 117():178-195. PubMed ID: 28712924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of 1-Hydroxy-4,5-Dimethyl-Imidazole 3-Oxide as Coformer in Formation of Pharmaceutical Cocrystals.
    Wróblewska A; Śniechowska J; Kaźmierski S; Wielgus E; Bujacz GD; Mlostoń G; Chworos A; Suwara J; Potrzebowski MJ
    Pharmaceutics; 2020 Apr; 12(4):. PubMed ID: 32326428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Synthesis of Cinnarizine Salt with Malic Acid by Applying Green Chemistry Using Water-Assisted Twin Screw Extrusion.
    Vasoya JM; Lee HL; Lee T; Serajuddin ATM
    Mol Pharm; 2023 Oct; 20(10):5160-5172. PubMed ID: 37646101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Quality Control of Pharmaceutical Cocrystals.
    Izutsu KI; Koide T; Takata N; Ikeda Y; Ono M; Inoue M; Fukami T; Yonemochi E
    Chem Pharm Bull (Tokyo); 2016 Oct; 64(10):1421-1430. PubMed ID: 27319284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.