These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31793737)
1. Identification of four caspase genes from Spodoptera exigua (Lepidoptera: Noctuidae) and their regulations toward different apoptotic stimulations. Yu H; Li ZQ; Ou-Yang YY; Huang GH Insect Sci; 2020 Dec; 27(6):1158-1172. PubMed ID: 31793737 [TBL] [Abstract][Full Text] [Related]
2. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda. Huang N; Civciristov S; Hawkins CJ; Clem RJ Insect Biochem Mol Biol; 2013 May; 43(5):444-54. PubMed ID: 23474489 [TBL] [Abstract][Full Text] [Related]
3. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. Crava CM; Jakubowska AK; Escriche B; Herrero S; Bel Y PLoS One; 2015; 10(5):e0125991. PubMed ID: 25993013 [TBL] [Abstract][Full Text] [Related]
4. Developmental regulation and antifungal activity of a growth-blocking peptide from the beet armyworm Spodoptera exigua. Wan H; Lee KS; Kim BY; Yuan M; Zhan S; Lu Y; You H; Li J; Jin BR Dev Comp Immunol; 2013 Oct; 41(2):240-7. PubMed ID: 23732405 [TBL] [Abstract][Full Text] [Related]
5. Baculovirus PTP2 Functions as a Pro-Apoptotic Protein. Han Y; van Houte S; van Oers MM; Ros VID Viruses; 2018 Apr; 10(4):. PubMed ID: 29642442 [TBL] [Abstract][Full Text] [Related]
6. Comparative evaluation of phenoloxidase activity in different larval stages of four lepidopteran pests after exposure to Bacillus thuringiensis. Valadez-Lira JA; Alcocer-Gonzalez JM; Damas G; Nuñez-Mejía G; Oppert B; Rodriguez-Padilla C; Tamez-Guerra P J Insect Sci; 2012; 12():80. PubMed ID: 23414117 [TBL] [Abstract][Full Text] [Related]
7. Gasmin (BV2-5), a polydnaviral-acquired gene in Spodoptera exigua. Trade-off in the defense against bacterial and viral infections. Gasmi L; Jakubowska AK; Herrero S Dev Comp Immunol; 2016 Mar; 56():37-45. PubMed ID: 26658027 [TBL] [Abstract][Full Text] [Related]
8. Functional interactions between members of the REPAT family of insect pathogen-induced proteins. Navarro-Cerrillo G; Ferré J; de Maagd RA; Herrero S Insect Mol Biol; 2012 Jun; 21(3):335-42. PubMed ID: 22404489 [TBL] [Abstract][Full Text] [Related]
9. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Herrero S; Ansems M; Van Oers MM; Vlak JM; Bakker PL; de Maagd RA Insect Biochem Mol Biol; 2007 Nov; 37(11):1109-18. PubMed ID: 17916497 [TBL] [Abstract][Full Text] [Related]
10. Identification of the ryanodine receptor mutation I4743M and its contribution to diamide insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae). Zuo YY; Ma HH; Lu WJ; Wang XL; Wu SW; Nauen R; Wu YD; Yang YH Insect Sci; 2020 Aug; 27(4):791-800. PubMed ID: 31140744 [TBL] [Abstract][Full Text] [Related]
11. The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Pascual L; Jakubowska AK; Blanca JM; Cañizares J; Ferré J; Gloeckner G; Vogel H; Herrero S Insect Biochem Mol Biol; 2012 Aug; 42(8):557-70. PubMed ID: 22564783 [TBL] [Abstract][Full Text] [Related]
12. Molecular identification of four novel cytochrome P450 genes related to the development of resistance of Spodoptera exigua (Lepidoptera: Noctuidae) to chlorantraniliprole. Wang X; Chen Y; Gong C; Yao X; Jiang C; Yang Q Pest Manag Sci; 2018 Aug; 74(8):1938-1952. PubMed ID: 29488686 [TBL] [Abstract][Full Text] [Related]
13. MOLECULAR CHARACTERIZATION OF AUTOPHAGY-RELATED GENE 5 FROM Spodoptera exigua AND EXPRESSION ANALYSIS UNDER VARIOUS STRESS CONDITIONS. Liu KY; Xia YQ; Zhou J; Chen ZW; Lu D; Zhang NZ; Liu XS; Ai H; Zhou LL Arch Insect Biochem Physiol; 2016 Aug; 92(4):225-41. PubMed ID: 27226059 [TBL] [Abstract][Full Text] [Related]
14. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. Zuo YY; Huang JL; Wang J; Feng Y; Han TT; Wu YD; Yang YH Insect Mol Biol; 2018 Feb; 27(1):36-45. PubMed ID: 28753233 [TBL] [Abstract][Full Text] [Related]
15. Molecular and functional properties of two Spodoptera exigua acetylcholinesterase genes. Zhao J; Hao D; Xiao L; Tan Y; Jiang Y; Bai L; Wang K Arch Insect Biochem Physiol; 2019 Jul; 101(3):e21554. PubMed ID: 31033012 [TBL] [Abstract][Full Text] [Related]
16. Characterization of two groups of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) C-type lectins and insights into their role in defense against the densovirus JcDV. Gasmi L; Jakubowska AK; Ferré J; Ogliastro M; Herrero S Arch Insect Biochem Physiol; 2018 Jan; 97(1):. PubMed ID: 29164671 [TBL] [Abstract][Full Text] [Related]
17. A cell strain cloned from Spodoptera exigua cell line (IOZCAS-Spex-II) highly susceptible to S. exigua nucleopolyhedrovirus infection. Zhang H; Zhang YA; Qin Q; Li X; Miao L; Wang Y; Qu L; Zhang A; Yang Q In Vitro Cell Dev Biol Anim; 2009; 45(5-6):201-4. PubMed ID: 19252957 [TBL] [Abstract][Full Text] [Related]
18. RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target. Park Y; Kim Y J Invertebr Pathol; 2013 Nov; 114(3):285-91. PubMed ID: 24055650 [TBL] [Abstract][Full Text] [Related]
19. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda. Yang Z; Zhou K; Liu H; Wu A; Mei L; Liu Q PLoS One; 2016; 11(3):e0151016. PubMed ID: 26977926 [TBL] [Abstract][Full Text] [Related]
20. Expression profiling of Gao B; Ji YJ; Zhao D; Zhang L; Wu H; Xie YF; Shi QY; Guo W Bull Entomol Res; 2024 Aug; 114(4):491-502. PubMed ID: 39279629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]