BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31793744)

  • 1. Two-Dimensional Material-Functionalized Separators for High-Energy-Density Metal-Sulfur and Metal-Based Batteries.
    Hu Y; Zhu X; Wang L
    ChemSusChem; 2020 Mar; 13(6):1366-1378. PubMed ID: 31793744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries.
    Li B; Xu H; Ma Y; Yang S
    Nanoscale Horiz; 2019 Jan; 4(1):77-98. PubMed ID: 32254146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Functionalized Separator for Stable and Reliable Lithium Metal Batteries: A Review.
    Kim PJ
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of recent developments in rechargeable lithium-sulfur batteries.
    Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B
    Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries.
    Zhang W; Tu Z; Qian J; Choudhury S; Archer LA; Lu Y
    Small; 2018 Mar; 14(11):e1703001. PubMed ID: 29280289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries.
    Wang F; Han Y; Feng X; Xu R; Li A; Wang T; Deng M; Tong C; Li J; Wei Z
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries.
    Ali T; Yan C
    ChemSusChem; 2020 Mar; 13(6):1447-1479. PubMed ID: 31436389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile separators toward advanced lithium-sulfur batteries: status, recent progress, challenges and perspective.
    Zhang M; Zhang X; Liu S; Hou W; Lu Y; Hou L; Luo Y; Liu Y; Yuan C
    ChemSusChem; 2024 May; ():e202400538. PubMed ID: 38763902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing high-energy lithium-sulfur batteries.
    Seh ZW; Sun Y; Zhang Q; Cui Y
    Chem Soc Rev; 2016 Oct; 45(20):5605-5634. PubMed ID: 27460222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries.
    Mei J; Wang J; Gu H; Du Y; Wang H; Yamauchi Y; Liao T; Sun Z; Yin Z
    Adv Mater; 2021 Feb; 33(8):e2004920. PubMed ID: 33382163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizons for Li-Ion Batteries Relevant to Electro-Mobility: High-Specific-Energy Cathodes and Chemically Active Separators.
    Susai FA; Sclar H; Shilina Y; Penki TR; Raman R; Maddukuri S; Maiti S; Halalay IC; Luski S; Markovsky B; Aurbach D
    Adv Mater; 2018 Oct; 30(41):e1801348. PubMed ID: 30015994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium-Sulfur Batteries.
    Song J; Su D; Xie X; Guo X; Bao W; Shao G; Wang G
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29427-29433. PubMed ID: 27723285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.
    McCloskey BD
    J Phys Chem Lett; 2015 Nov; 6(22):4581-8. PubMed ID: 26722800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Materials to Address the Lithium Battery Challenges.
    Rojaee R; Shahbazian-Yassar R
    ACS Nano; 2020 Mar; 14(3):2628-2658. PubMed ID: 32083832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodine Redox Chemistry in Rechargeable Batteries.
    Ma J; Liu M; He Y; Zhang J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12636-12647. PubMed ID: 32939916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.
    Xiang Y; Li J; Lei J; Liu D; Xie Z; Qu D; Li K; Deng T; Tang H
    ChemSusChem; 2016 Nov; 9(21):3023-3039. PubMed ID: 27667306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Feasibility of Practical Mg-S Batteries: Practical Limitations Associated with Metallic Magnesium Anodes.
    Salama M; Attias R; Hirsch B; Yemini R; Gofer Y; Noked M; Aurbach D
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36910-36917. PubMed ID: 30295459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.