These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31793750)

  • 1. Electron-Beam-Driven III-Nitride Plasmonic Nanolasers in the Deep-UV and Visible Region.
    Tao T; Zhi T; Liu B; Chen P; Xie Z; Zhao H; Ren F; Chen D; Zheng Y; Zhang R
    Small; 2020 Jan; 16(1):e1906205. PubMed ID: 31793750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Light Emitters and UV Solar-Blind Avalanche Photodiodes based on III-Nitride Semiconductors.
    Liu B; Chen D; Lu H; Tao T; Zhuang Z; Shao Z; Xu W; Ge H; Zhi T; Ren F; Ye J; Xie Z; Zhang R
    Adv Mater; 2020 Jul; 32(27):e1904354. PubMed ID: 31599998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A room temperature low-threshold ultraviolet plasmonic nanolaser.
    Zhang Q; Li G; Liu X; Qian F; Li Y; Sum TC; Lieber CM; Xiong Q
    Nat Commun; 2014 Sep; 5():4953. PubMed ID: 25247634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Chip Monolithically Integrated Ultraviolet Low-Threshold Plasmonic Metal-Semiconductor Heterojunction Nanolasers.
    Sun JY; Nguyen DH; Liu JM; Lo CY; Ma YR; Chen YJ; Yi JY; Huang JZ; Giap H; Nguyen HYT; Liao CD; Lin MY; Lai CC
    Adv Sci (Weinh); 2023 Oct; 10(28):e2301493. PubMed ID: 37559172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges.
    Liang Y; Li C; Huang YZ; Zhang Q
    ACS Nano; 2020 Nov; 14(11):14375-14390. PubMed ID: 33119269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Performance Plasmonic Nanolasers with External Quantum Efficiency Exceeding 10.
    Wang S; Chen HZ; Ma RM
    Nano Lett; 2018 Dec; 18(12):7942-7948. PubMed ID: 30422664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array.
    Zhang C; Lu Y; Ni Y; Li M; Mao L; Liu C; Zhang D; Ming H; Wang P
    Nano Lett; 2015 Feb; 15(2):1382-7. PubMed ID: 25622291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-Temperature Gate Voltage Modulation of Plasmonic Nanolasers.
    Huang ZT; Chien TW; Cheng CW; Li CC; Chen KP; Gwo S; Lu TC
    ACS Nano; 2023 Apr; 17(7):6488-6496. PubMed ID: 36989057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.
    Chou YH; Hong KB; Chang CT; Chang TC; Huang ZT; Cheng PJ; Yang JH; Lin MH; Lin TR; Chen KP; Gwo S; Lu TC
    Nano Lett; 2018 Feb; 18(2):747-753. PubMed ID: 29320208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities.
    Li L; Cai W; Du C; Guan Z; Xiang Y; Ma Z; Wu W; Ren M; Zhang X; Tang A; Xu J
    Nanoscale; 2018 Dec; 10(47):22357-22361. PubMed ID: 30474670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers.
    Chou BT; Chou YH; Wu YM; Chung YC; Hsueh WJ; Lin SW; Lu TC; Lin TR; Lin SD
    Sci Rep; 2016 Jan; 6():19887. PubMed ID: 26814581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Localized Surface Plasmon Nanolasers via Strong Coupling.
    Liao JW; Huang ZT; Wu CH; Gagrani N; Tan HH; Jagadish C; Chen KP; Lu TC
    Nano Lett; 2023 May; 23(10):4359-4366. PubMed ID: 37155142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic crystal defect nanolaser.
    Lakhani AM; Kim MK; Lau EK; Wu MC
    Opt Express; 2011 Sep; 19(19):18237-45. PubMed ID: 21935190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Nanolaser Technology.
    Jeong KY; Hwang MS; Kim J; Park JS; Lee JM; Park HG
    Adv Mater; 2020 Dec; 32(51):e2001996. PubMed ID: 32945000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers.
    Cheng PJ; Zheng QY; Hsu CY; Li H; Hong KB; Zhu Y; Cui Q; Xu C; Lu TC; Lin TR
    Nanoscale Res Lett; 2020 Mar; 15(1):66. PubMed ID: 32227260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Chip Monolithically Fabricated Plasmonic-Waveguide Nanolaser.
    Ho YL; Clark JK; Kamal ASA; Delaunay JJ
    Nano Lett; 2018 Dec; 18(12):7769-7776. PubMed ID: 30423249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasmall InGa(As)P Dielectric and Plasmonic Nanolasers.
    Sarkar D; Cho S; Yan H; Martino N; Dannenberg PH; Yun SH
    ACS Nano; 2023 Aug; 17(16):16048-16055. PubMed ID: 37523588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.