These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31793777)
21. Theoretical insights into the interaction mechanism between proteins and SWCNTs: adsorptions of tripeptides GXG on SWCNTs. Wang Y; Ai H J Phys Chem B; 2009 Jul; 113(28):9620-7. PubMed ID: 19548664 [TBL] [Abstract][Full Text] [Related]
22. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Lu N; Li J; Tian R; Peng YY Chem Res Toxicol; 2014 Jun; 27(6):1070-7. PubMed ID: 24870066 [TBL] [Abstract][Full Text] [Related]
23. Dielectric properties of water inside single-walled carbon nanotubes. Mikami F; Matsuda K; Kataura H; Maniwa Y ACS Nano; 2009 May; 3(5):1279-87. PubMed ID: 19385604 [TBL] [Abstract][Full Text] [Related]
24. Dispersion quality of single-walled carbon nanotubes reveals the recognition sequence of DNA. Ke F; Chen J; Wu R; Chen Y Nanotechnology; 2020 Apr; 31(25):255708. PubMed ID: 32150741 [TBL] [Abstract][Full Text] [Related]
25. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers. Zhou Z; Zhao J; Schleyer Pv; Chen Z J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758 [TBL] [Abstract][Full Text] [Related]
26. On modeling biomolecular-surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces. Akdim B; Pachter R; Day PN; Kim SS; Naik RR Nanotechnology; 2012 Apr; 23(16):165703. PubMed ID: 22460916 [TBL] [Abstract][Full Text] [Related]
27. Unwinding DNA strands by single-walled carbon nanotubes: Molecular docking and MD simulation approach. Borhan G; Sahihi M J Mol Graph Model; 2024 Dec; 133():108882. PubMed ID: 39405984 [TBL] [Abstract][Full Text] [Related]
28. Adsorption of plasma proteins onto PEGylated single-walled carbon nanotubes: The effects of protein shape, PEG size and grafting density. Lee H J Mol Graph Model; 2017 Aug; 75():1-8. PubMed ID: 28501530 [TBL] [Abstract][Full Text] [Related]
29. Atomically resolved field emission patterns of single-walled carbon nanotubes. Liu W; Hou S; Zhang Z; Zhang G; Gu Z; Luo J; Zhao X; Xue Z Ultramicroscopy; 2003 Apr; 94(3-4):175-82. PubMed ID: 12524187 [TBL] [Abstract][Full Text] [Related]
30. Symmetry in electron diffractions from helical structures. Zhang J; Zhu J Ultramicroscopy; 2008 Aug; 108(9):832-6. PubMed ID: 18395984 [TBL] [Abstract][Full Text] [Related]
31. Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon. Shearer CJ; Fahy A; Barr M; Dastoor PC; Shapter JG Nanoscale Res Lett; 2012 Aug; 7(1):432. PubMed ID: 22853557 [TBL] [Abstract][Full Text] [Related]
32. Toxicity of Single-Walled Carbon Nanotubes (SWCNTs): Effect of Lengths, Functional Groups and Electronic Structures Revealed by a Quantitative Toxicogenomics Assay. Jiang T; Amadei CA; Gou N; Lin Y; Lan J; Vecitis CD; Gu AZ Environ Sci Nano; 2020 May; 7(5):1348-1364. PubMed ID: 33537148 [TBL] [Abstract][Full Text] [Related]
33. Interaction between glycine/glycine radicals and intrinsic/boron-doped (8,0) single-walled carbon nanotubes: a density functional theory study. Sun W; Bu Y; Wang Y J Phys Chem B; 2008 Dec; 112(48):15442-9. PubMed ID: 19006275 [TBL] [Abstract][Full Text] [Related]
34. Electronic properties and reactivity of Pt-doped carbon nanotubes. Tian WQ; Liu LV; Wang YA Phys Chem Chem Phys; 2006 Aug; 8(30):3528-39. PubMed ID: 16871342 [TBL] [Abstract][Full Text] [Related]
35. Oligodeoxyribonucleotide association with single-walled carbon nanotubes studied by SPM. Lahiji RR; Dolash BD; Bergstrom DE; Reifenberger R Small; 2007 Nov; 3(11):1912-20. PubMed ID: 17935061 [TBL] [Abstract][Full Text] [Related]
36. Length effects of single-walled carbon nanotubes on pulmonary toxicity after intratracheal instillation in rats. Ema M; Takehara H; Naya M; Kataura H; Fujita K; Honda K J Toxicol Sci; 2017; 42(3):367-378. PubMed ID: 28496043 [TBL] [Abstract][Full Text] [Related]
37. Horizontally-aligned single-walled carbon nanotubes on sapphire. Ago H; Ishigami N; Imamoto K; Suzuki T; Ikeda K; Tsuji M; Ikuta T; Takahashi K J Nanosci Nanotechnol; 2008 Nov; 8(11):6165-9. PubMed ID: 19198359 [TBL] [Abstract][Full Text] [Related]
38. Large-scale aligned carbon nanotubes from their purified, highly concentrated suspension. Lu L; Chen W ACS Nano; 2010 Feb; 4(2):1042-8. PubMed ID: 20088601 [TBL] [Abstract][Full Text] [Related]
39. Defect-Induced Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Treated with Polyunsaturated Fatty Acids. Chiu CF; Saidi WA; Kagan VE; Star A J Am Chem Soc; 2017 Apr; 139(13):4859-4865. PubMed ID: 28288512 [TBL] [Abstract][Full Text] [Related]
40. Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube. Baei MT; Peyghan AA; Moghimi M J Mol Model; 2012 Sep; 18(9):4477-89. PubMed ID: 22643968 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]