These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
756 related articles for article (PubMed ID: 31794016)
1. Deep learning in clinical natural language processing: a methodical review. Wu S; Roberts K; Datta S; Du J; Ji Z; Si Y; Soni S; Wang Q; Wei Q; Xiang Y; Zhao B; Xu H J Am Med Inform Assoc; 2020 Mar; 27(3):457-470. PubMed ID: 31794016 [TBL] [Abstract][Full Text] [Related]
2. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review. Hossain E; Rana R; Higgins N; Soar J; Barua PD; Pisani AR; Turner K Comput Biol Med; 2023 Mar; 155():106649. PubMed ID: 36805219 [TBL] [Abstract][Full Text] [Related]
3. A scoping review of publicly available language tasks in clinical natural language processing. Gao Y; Dligach D; Christensen L; Tesch S; Laffin R; Xu D; Miller T; Uzuner O; Churpek MM; Afshar M J Am Med Inform Assoc; 2022 Sep; 29(10):1797-1806. PubMed ID: 35923088 [TBL] [Abstract][Full Text] [Related]
4. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation. Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning for Natural Language Processing in Radiology-Fundamentals and a Systematic Review. Sorin V; Barash Y; Konen E; Klang E J Am Coll Radiol; 2020 May; 17(5):639-648. PubMed ID: 32004480 [TBL] [Abstract][Full Text] [Related]
6. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
7. Medical Information Extraction in the Age of Deep Learning. Hahn U; Oleynik M Yearb Med Inform; 2020 Aug; 29(1):208-220. PubMed ID: 32823318 [TBL] [Abstract][Full Text] [Related]
8. Extracting adverse drug events from clinical Notes: A systematic review of approaches used. Modi S; Kasmiran KA; Mohd Sharef N; Sharum MY J Biomed Inform; 2024 Mar; 151():104603. PubMed ID: 38331081 [TBL] [Abstract][Full Text] [Related]
9. A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis. Young IJB; Luz S; Lone N Int J Med Inform; 2019 Dec; 132():103971. PubMed ID: 31630063 [TBL] [Abstract][Full Text] [Related]
10. Expanding the Diversity of Texts and Applications: Findings from the Section on Clinical Natural Language Processing of the International Medical Informatics Association Yearbook. Névéol A; Zweigenbaum P; Yearb Med Inform; 2018 Aug; 27(1):193-198. PubMed ID: 30157523 [TBL] [Abstract][Full Text] [Related]
11. Systematic Evaluation of Research Progress on Natural Language Processing in Medicine Over the Past 20 Years: Bibliometric Study on PubMed. Wang J; Deng H; Liu B; Hu A; Liang J; Fan L; Zheng X; Wang T; Lei J J Med Internet Res; 2020 Jan; 22(1):e16816. PubMed ID: 32012074 [TBL] [Abstract][Full Text] [Related]
12. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning. Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches. Weegar R; Pérez A; Casillas A; Oronoz M BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 7):274. PubMed ID: 31865900 [TBL] [Abstract][Full Text] [Related]
14. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. Wei Q; Ji Z; Li Z; Du J; Wang J; Xu J; Xiang Y; Tiryaki F; Wu S; Zhang Y; Tao C; Xu H J Am Med Inform Assoc; 2020 Jan; 27(1):13-21. PubMed ID: 31135882 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning for Natural Language Processing in Urology: State-of-the-Art Automated Extraction of Detailed Pathologic Prostate Cancer Data From Narratively Written Electronic Health Records. Leyh-Bannurah SR; Tian Z; Karakiewicz PI; Wolffgang U; Sauter G; Fisch M; Pehrke D; Huland H; Graefen M; Budäus L JCO Clin Cancer Inform; 2018 Dec; 2():1-9. PubMed ID: 30652616 [TBL] [Abstract][Full Text] [Related]
16. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
17. Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text. Li Z; Yang Z; Shen C; Xu J; Zhang Y; Xu H BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):22. PubMed ID: 30700301 [TBL] [Abstract][Full Text] [Related]
18. Extracting entities with attributes in clinical text via joint deep learning. Shi X; Yi Y; Xiong Y; Tang B; Chen Q; Wang X; Ji Z; Zhang Y; Xu H J Am Med Inform Assoc; 2019 Dec; 26(12):1584-1591. PubMed ID: 31550346 [TBL] [Abstract][Full Text] [Related]
19. Few-shot learning for medical text: A review of advances, trends, and opportunities. Ge Y; Guo Y; Das S; Al-Garadi MA; Sarker A J Biomed Inform; 2023 Aug; 144():104458. PubMed ID: 37488023 [TBL] [Abstract][Full Text] [Related]
20. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review. Sheikhalishahi S; Miotto R; Dudley JT; Lavelli A; Rinaldi F; Osmani V JMIR Med Inform; 2019 Apr; 7(2):e12239. PubMed ID: 31066697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]