These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31794061)

  • 1. Quantitative Interpretation of Genetic Toxicity Dose-Response Data for Risk Assessment and Regulatory Decision-Making: Current Status and Emerging Priorities.
    White PA; Long AS; Johnson GE
    Environ Mol Mutagen; 2020 Jan; 61(1):66-83. PubMed ID: 31794061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IWGT report on quantitative approaches to genotoxicity risk assessment I. Methods and metrics for defining exposure-response relationships and points of departure (PoDs).
    MacGregor JT; Frötschl R; White PA; Crump KS; Eastmond DA; Fukushima S; Guérard M; Hayashi M; Soeteman-Hernández LG; Kasamatsu T; Levy DD; Morita T; Müller L; Schoeny R; Schuler MJ; Thybaud V; Johnson GE
    Mutat Res Genet Toxicol Environ Mutagen; 2015 May; 783():55-65. PubMed ID: 25953400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing BMD-derived genotoxic potency estimations across variants of the transgenic rodent gene mutation assay.
    Wills JW; Johnson GE; Battaion HL; Slob W; White PA
    Environ Mol Mutagen; 2017 Dec; 58(9):632-643. PubMed ID: 28945287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations.
    Dearfield KL; Gollapudi BB; Bemis JC; Benz RD; Douglas GR; Elespuru RK; Johnson GE; Kirkland DJ; LeBaron MJ; Li AP; Marchetti F; Pottenger LH; Rorije E; Tanir JY; Thybaud V; van Benthem J; Yauk CL; Zeiger E; Luijten M
    Environ Mol Mutagen; 2017 Jun; 58(5):264-283. PubMed ID: 27650663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishing a quantitative framework for regulatory interpretation of genetic toxicity dose-response data: Margin of exposure case study of 48 compounds with both in vivo mutagenicity and carcinogenicity dose-response data.
    Chepelev N; Long AS; Beal M; Barton-Maclaren T; Johnson G; Dearfield KL; Roberts DJ; van Benthem J; White P
    Environ Mol Mutagen; 2023 Jan; 64(1):4-15. PubMed ID: 36345771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Empirical analysis of BMD metrics in genetic toxicology part II: in vivo potency comparisons to promote reductions in the use of experimental animals for genetic toxicity assessment.
    Wills JW; Long AS; Johnson GE; Bemis JC; Dertinger SD; Slob W; White PA
    Mutagenesis; 2016 May; 31(3):265-75. PubMed ID: 26984301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative approaches for assessing dose-response relationships in genetic toxicology studies.
    Gollapudi BB; Johnson GE; Hernandez LG; Pottenger LH; Dearfield KL; Jeffrey AM; Julien E; Kim JH; Lovell DP; Macgregor JT; Moore MM; van Benthem J; White PA; Zeiger E; Thybaud V
    Environ Mol Mutagen; 2013 Jan; 54(1):8-18. PubMed ID: 22987251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical analysis of BMD metrics in genetic toxicology part I: in vitro analyses to provide robust potency rankings and support MOA determinations.
    Wills JW; Johnson GE; Doak SH; Soeteman-Hernández LG; Slob W; White PA
    Mutagenesis; 2016 May; 31(3):255-63. PubMed ID: 26687511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation as a Toxicological Endpoint for Regulatory Decision-Making.
    Heflich RH; Johnson GE; Zeller A; Marchetti F; Douglas GR; Witt KL; Gollapudi BB; White PA
    Environ Mol Mutagen; 2020 Jan; 61(1):34-41. PubMed ID: 31600846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proposal for a novel rationale for critical effect size in dose-response analysis based on a multi-endpoint in vivo study with methyl methanesulfonate.
    Zeller A; Tang L; Dertinger SD; Funk J; Duran-Pacheco G; Guérard M
    Mutagenesis; 2016 May; 31(3):239-53. PubMed ID: 26590612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmark dose analyses of multiple genetic toxicity endpoints permit robust, cross-tissue comparisons of MutaMouse responses to orally delivered benzo[a]pyrene.
    Long AS; Wills JW; Krolak D; Guo M; Dertinger SD; Arlt VM; White PA
    Arch Toxicol; 2018 Feb; 92(2):967-982. PubMed ID: 29177888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy for genotoxicity testing: hazard identification and risk assessment in relation to in vitro testing.
    Thybaud V; Aardema M; Clements J; Dearfield K; Galloway S; Hayashi M; Jacobson-Kram D; Kirkland D; MacGregor JT; Marzin D; Ohyama W; Schuler M; Suzuki H; Zeiger E;
    Mutat Res; 2007 Feb; 627(1):41-58. PubMed ID: 17126066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of point of departure (PoD) estimates in genetic toxicology studies and their potential applications in risk assessment.
    Johnson GE; Soeteman-Hernández LG; Gollapudi BB; Bodger OG; Dearfield KL; Heflich RH; Hixon JG; Lovell DP; MacGregor JT; Pottenger LH; Thompson CM; Abraham L; Thybaud V; Tanir JY; Zeiger E; van Benthem J; White PA
    Environ Mol Mutagen; 2014 Oct; 55(8):609-23. PubMed ID: 24801602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk.
    MacGregor JT; Frötschl R; White PA; Crump KS; Eastmond DA; Fukushima S; Guérard M; Hayashi M; Soeteman-Hernández LG; Johnson GE; Kasamatsu T; Levy DD; Morita T; Müller L; Schoeny R; Schuler MJ; Thybaud V
    Mutat Res Genet Toxicol Environ Mutagen; 2015 May; 783():66-78. PubMed ID: 25953401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations for the Use of Mutation as a Regulatory Endpoint in Risk Assessment.
    Klapacz J; Gollapudi BB
    Environ Mol Mutagen; 2020 Jan; 61(1):84-93. PubMed ID: 31301246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotoxicity as a toxicologically relevant endpoint to inform risk assessment: A case study with ethylene oxide.
    Gollapudi BB; Su S; Li AA; Johnson GE; Reiss R; Albertini RJ
    Environ Mol Mutagen; 2020 Nov; 61(9):852-871. PubMed ID: 32926486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety assessment and global regulatory requirements for genetic toxicity evaluations of medical devices.
    Przygoda RT
    Environ Mol Mutagen; 2017 Jun; 58(5):375-379. PubMed ID: 28573657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethyl methanesulfonate toxicity in Viracept--a comprehensive human risk assessment based on threshold data for genotoxicity.
    Müller L; Gocke E; Lavé T; Pfister T
    Toxicol Lett; 2009 Nov; 190(3):317-29. PubMed ID: 19443141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive interpretation of in vitro micronucleus test results for 292 chemicals: from hazard identification to risk assessment application.
    Kuo B; Beal MA; Wills JW; White PA; Marchetti F; Nong A; Barton-Maclaren TS; Houck K; Yauk CL
    Arch Toxicol; 2022 Jul; 96(7):2067-2085. PubMed ID: 35445829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An appraisal of critical effect sizes for the benchmark dose approach to assess dose-response relationships in genetic toxicology.
    Zeller A; Duran-Pacheco G; Guérard M
    Arch Toxicol; 2017 Dec; 91(12):3799-3807. PubMed ID: 28799093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.