BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 31794082)

  • 1. Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid-State Magnetic Resonance Spectroscopy.
    Kumar V; Xu Y; Bryce DL
    Chemistry; 2020 Mar; 26(15):3275-3286. PubMed ID: 31794082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct investigation of chalcogen bonds by multinuclear solid-state magnetic resonance and vibrational spectroscopy.
    Kumar V; Xu Y; Leroy C; Bryce DL
    Phys Chem Chem Phys; 2020 Feb; 22(7):3817-3824. PubMed ID: 31994554
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Nag T; Ovens JS; Bryce DL
    Acta Crystallogr C Struct Chem; 2022 Oct; 78(Pt 10):517-523. PubMed ID: 36196784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictability of Chalcogen-Bond-Driven Crystal Engineering: An X-ray Diffraction and Selenium-77 Solid-State NMR Investigation of Benzylic Selenocyanate Cocrystals.
    Kumar V; Triglav M; Morin VM; Bryce DL
    ACS Org Inorg Au; 2022 Jun; 2(3):252-260. PubMed ID: 36855468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chalcogen Bond in Crystalline Solids: A World Parallel to Halogen Bond.
    Scilabra P; Terraneo G; Resnati G
    Acc Chem Res; 2019 May; 52(5):1313-1324. PubMed ID: 31082186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct investigation of halogen bonds by solid-state multinuclear magnetic resonance spectroscopy and molecular orbital analysis.
    Viger-Gravel J; Leclerc S; Korobkov I; Bryce DL
    J Am Chem Soc; 2014 May; 136(19):6929-42. PubMed ID: 24786448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Evidence for Non-Fermi-Contact J Coupling Across Chalcogen Bonds in Ionic Salt Cocrystal Polymorphs.
    Nag T; Terskikh VV; Bryce DL
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202402441. PubMed ID: 38498337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Classical Synthons: Supramolecular Recognition by S⋅⋅⋅O Chalcogen Bonding in Molecular Complexes of Riluzole.
    Thomas SP; Kumar V; Alhameedi K; Guru Row TN
    Chemistry; 2019 Mar; 25(14):3591-3597. PubMed ID: 30576020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fingerprints of Chalcogen Bonding Revealed Through
    Fellowes T; Sani MA; White JM
    Chemistry; 2024 May; 30(30):e202400385. PubMed ID: 38506412
    [No Abstract]   [Full Text] [Related]  

  • 10. Supramolecular Wiring of Benzo-1,3-chalcogenazoles through Programmed Chalcogen Bonding Interactions.
    Kremer A; Fermi A; Biot N; Wouters J; Bonifazi D
    Chemistry; 2016 Apr; 22(16):5665-75. PubMed ID: 26899235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of chalcogen bonding interactions via an in-depth conceptual quantum chemical analysis.
    De Vleeschouwer F; Denayer M; Pinter B; Geerlings P; De Proft F
    J Comput Chem; 2018 Apr; 39(10):557-572. PubMed ID: 29125203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activating Chalcogen Bonding (ChB) in Alkylseleno/Alkyltelluroacetylenes toward Chalcogen Bonding Directionality Control.
    Dhaka A; Jeannin O; Jeon IR; Aubert E; Espinosa E; Fourmigué M
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23583-23587. PubMed ID: 32940957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Activation of Chalcogen Bonding: An Efficient Structuring Tool toward Crystal Engineering Strategies.
    Dhaka A; Jeon IR; Fourmigué M
    Acc Chem Res; 2024 Feb; 57(3):362-374. PubMed ID: 38275221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurring Chalcogen- and Halogen-Bonding Interactions in Supramolecular Polymers for Crystal Engineering Applications.
    Biot N; Bonifazi D
    Chemistry; 2020 Mar; 26(13):2904-2913. PubMed ID: 31840314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic Surface Potentials and Chalcogen-Bonding Motifs of Substituted 2,1,3-Benzoselenadiazoles Probed via 77Se Solid-State NMR Spectroscopy.
    Georges T; Ovens JS; Bryce DL
    Chemistry; 2024 Jul; ():e202402254. PubMed ID: 38958873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance-assisted intramolecular chalcogen-chalcogen interactions?
    Sanz P; Yáñez M; Mó O
    Chemistry; 2003 Sep; 9(18):4548-55. PubMed ID: 14502641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusually short chalcogen bonds involving organoselenium: insights into the Se-N bond cleavage mechanism of the antioxidant ebselen and analogues.
    Thomas SP; Satheeshkumar K; Mugesh G; Guru Row TN
    Chemistry; 2015 Apr; 21(18):6793-800. PubMed ID: 25766307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Noncovalent Chalcogen-Chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations.
    Gleiter R; Haberhauer G; Werz DB; Rominger F; Bleiholder C
    Chem Rev; 2018 Feb; 118(4):2010-2041. PubMed ID: 29420879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical investigations on heteronuclear chalcogen-chalcogen interactions: on the nature of weak bonds between chalcogen centers.
    Bleiholder C; Gleiter R; Werz DB; Köppel H
    Inorg Chem; 2007 Mar; 46(6):2249-60. PubMed ID: 17311376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chalcogen bonding in solution: interactions of benzotelluradiazoles with anionic and uncharged Lewis bases.
    Garrett GE; Gibson GL; Straus RN; Seferos DS; Taylor MS
    J Am Chem Soc; 2015 Apr; 137(12):4126-33. PubMed ID: 25781631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.