These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 31794187)
1. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. Gong HY; Park J; Kim W; Kim J; Lee JY; Koh WG ACS Appl Mater Interfaces; 2019 Dec; 11(51):47695-47706. PubMed ID: 31794187 [TBL] [Abstract][Full Text] [Related]
2. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919 [TBL] [Abstract][Full Text] [Related]
3. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
4. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation. Park J; Choi JH; Kim S; Jang I; Jeong S; Lee JY Acta Biomater; 2019 Oct; 97():141-153. PubMed ID: 31352108 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441 [TBL] [Abstract][Full Text] [Related]
6. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation. Guan S; Wang Y; Xie F; Wang S; Xu W; Xu J; Sun C Molecules; 2022 Nov; 27(23):. PubMed ID: 36500418 [TBL] [Abstract][Full Text] [Related]
9. Reversibly Assembled Electroconductive Hydrogel via a Host-Guest Interaction for 3D Cell Culture. Xu Y; Cui M; Patsis PA; Günther M; Yang X; Eckert K; Zhang Y ACS Appl Mater Interfaces; 2019 Feb; 11(8):7715-7724. PubMed ID: 30714715 [TBL] [Abstract][Full Text] [Related]
13. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925 [TBL] [Abstract][Full Text] [Related]
14. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Jun I; Jeong S; Shin H Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222 [TBL] [Abstract][Full Text] [Related]
15. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration. Marcinczyk M; Elmashhady H; Talovic M; Dunn A; Bugis F; Garg K Biomaterials; 2017 Oct; 141():233-242. PubMed ID: 28697464 [TBL] [Abstract][Full Text] [Related]
16. Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Poveda-Reyes S; Moulisova V; Sanmartín-Masiá E; Quintanilla-Sierra L; Salmerón-Sánchez M; Ferrer GG Macromol Biosci; 2016 Sep; 16(9):1311-24. PubMed ID: 27213762 [TBL] [Abstract][Full Text] [Related]
17. Electrically controlled release of benzoic acid from poly(3,4-ethylenedioxythiophene)/alginate matrix: effect of conductive poly(3,4-ethylenedioxythiophene) morphology. Paradee N; Sirivat A J Phys Chem B; 2014 Aug; 118(31):9263-71. PubMed ID: 25059579 [TBL] [Abstract][Full Text] [Related]
18. Directly Induced Neural Differentiation of Human Adipose-Derived Stem Cells Using Three-Dimensional Culture System of Conductive Microwell with Electrical Stimulation. Heo DN; Acquah N; Kim J; Lee SJ; Castro NJ; Zhang LG Tissue Eng Part A; 2018 Apr; 24(7-8):537-545. PubMed ID: 28741412 [TBL] [Abstract][Full Text] [Related]
19. Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling. Luque GC; Picchio ML; Daou B; Lasa-Fernandez H; Criado-Gonzalez M; Querejeta R; Filgueiras-Ramas D; Prato M; Mecerreyes D; Ruiz-Cabello J; Alegret N ACS Appl Mater Interfaces; 2024 Jul; 16(27):34467-34479. PubMed ID: 38936818 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]