BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31794207)

  • 1. High-Throughput PIXE as an Essential Quantitative Assay for Accurate Metalloprotein Structural Analysis: Development and Application.
    Grime GW; Zeldin OB; Snell ME; Lowe ED; Hunt JF; Montelione GT; Tong L; Snell EH; Garman EF
    J Am Chem Soc; 2020 Jan; 142(1):185-197. PubMed ID: 31794207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metalloprotein Crystallography: More than a Structure.
    Bowman SE; Bridwell-Rabb J; Drennan CL
    Acc Chem Res; 2016 Apr; 49(4):695-702. PubMed ID: 26975689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics.
    Shi W; Zhan C; Ignatov A; Manjasetty BA; Marinkovic N; Sullivan M; Huang R; Chance MR
    Structure; 2005 Oct; 13(10):1473-86. PubMed ID: 16216579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of metalloproteins by high-throughput X-ray absorption spectroscopy.
    Shi W; Punta M; Bohon J; Sauder JM; D'Mello R; Sullivan M; Toomey J; Abel D; Lippi M; Passerini A; Frasconi P; Burley SK; Rost B; Chance MR
    Genome Res; 2011 Jun; 21(6):898-907. PubMed ID: 21482623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontiers in metalloprotein crystallography and cryogenic electron microscopy.
    Gopalasingam CC; Hasnain SS
    Curr Opin Struct Biol; 2022 Aug; 75():102420. PubMed ID: 35841747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray crystallographic studies of metalloproteins.
    Volbeda A
    Methods Mol Biol; 2014; 1122():189-206. PubMed ID: 24639261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metalloprotein active site structure determination: synergy between X-ray absorption spectroscopy and X-ray crystallography.
    Cotelesage JJ; Pushie MJ; Grochulski P; Pickering IJ; George GN
    J Inorg Biochem; 2012 Oct; 115():127-37. PubMed ID: 22824156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale Quantum Refinement Approaches for Metalloproteins.
    Yan Z; Li X; Chung LW
    J Chem Theory Comput; 2021 Jun; 17(6):3783-3796. PubMed ID: 34032440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can soaked-in scavengers protect metalloprotein active sites from reduction during data collection?
    Macedo S; Pechlaner M; Schmid W; Weik M; Sato K; Dennison C; Djinović-Carugo K
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):191-204. PubMed ID: 19240331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying metal binding amino acids based on backbone geometries as a tool for metalloprotein engineering.
    Nguyen H; Kleingardner J
    Protein Sci; 2021 Jun; 30(6):1247-1257. PubMed ID: 33829594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data.
    Lancaster WA; Praissman JL; Poole FL; Cvetkovic A; Menon AL; Scott JW; Jenney FE; Thorgersen MP; Kalisiak E; Apon JV; Trauger SA; Siuzdak G; Tainer JA; Adams MW
    BMC Bioinformatics; 2011 Feb; 12():64. PubMed ID: 21356119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant coordination geometries discovered in the most abundant metalloproteins.
    Yao S; Flight RM; Rouchka EC; Moseley HN
    Proteins; 2017 May; 85(5):885-907. PubMed ID: 28142195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites.
    Valasatava Y; Andreini C; Rosato A
    Sci Rep; 2015 Mar; 5():9486. PubMed ID: 25820752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assignment of individual metal redox states in a metalloprotein by crystallographic refinement at multiple X-ray wavelengths.
    Einsle O; Andrade SL; Dobbek H; Meyer J; Rees DC
    J Am Chem Soc; 2007 Feb; 129(8):2210-1. PubMed ID: 17269774
    [No Abstract]   [Full Text] [Related]  

  • 16. Cell-Free Protein Synthesis of Metalloproteins.
    Koo J
    Adv Biochem Eng Biotechnol; 2023; 185():47-58. PubMed ID: 37561181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data mining of metal ion environments present in protein structures.
    Zheng H; Chruszcz M; Lasota P; Lebioda L; Minor W
    J Inorg Biochem; 2008 Sep; 102(9):1765-76. PubMed ID: 18614239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers.
    Kern J; Yachandra VK; Yano J
    Curr Opin Struct Biol; 2015 Oct; 34():87-98. PubMed ID: 26342144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins.
    Rulísek L; Vondrásek J
    J Inorg Biochem; 1998 Sep; 71(3-4):115-27. PubMed ID: 9833317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.