BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 31794278)

  • 1. Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models.
    Lee SH; Choi N; Sung JH
    Expert Opin Drug Metab Toxicol; 2019 Dec; 15(12):1005-1019. PubMed ID: 31794278
    [No Abstract]   [Full Text] [Related]  

  • 2. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips.
    Prantil-Baun R; Novak R; Das D; Somayaji MR; Przekwas A; Ingber DE
    Annu Rev Pharmacol Toxicol; 2018 Jan; 58():37-64. PubMed ID: 29309256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs.
    Sung JH
    Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):969-986. PubMed ID: 33764248
    [No Abstract]   [Full Text] [Related]  

  • 4. Comprehensive Development in Organ-On-A-Chip Technology.
    Joseph X; Akhil V; Arathi A; Mohanan PV
    J Pharm Sci; 2022 Jan; 111(1):18-31. PubMed ID: 34324944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology.
    Lee SH; Sung JH
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28945001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An on-chip small intestine-liver model for pharmacokinetic studies.
    Kimura H; Ikeda T; Nakayama H; Sakai Y; Fujii T
    J Lab Autom; 2015 Jun; 20(3):265-73. PubMed ID: 25385717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An update on microfluidic multi-organ-on-a-chip systems for reproducing drug pharmacokinetics: the current state-of-the-art.
    Vasconez Martinez MG; Frauenlob M; Rothbauer M
    Expert Opin Drug Metab Toxicol; 2024 Jun; 20(6):459-471. PubMed ID: 38832686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the relationship between pharmacokinetics and pharmacodynamics in drug development and therapeutic equivalence: a PEARRL review.
    Loisios-Konstantinidis I; Paraiso RLM; Fotaki N; McAllister M; Cristofoletti R; Dressman J
    J Pharm Pharmacol; 2019 Apr; 71(4):699-723. PubMed ID: 30793317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips.
    Herland A; Maoz BM; Das D; Somayaji MR; Prantil-Baun R; Novak R; Cronce M; Huffstater T; Jeanty SSF; Ingram M; Chalkiadaki A; Benson Chou D; Marquez S; Delahanty A; Jalili-Firoozinezhad S; Milton Y; Sontheimer-Phelps A; Swenor B; Levy O; Parker KK; Przekwas A; Ingber DE
    Nat Biomed Eng; 2020 Apr; 4(4):421-436. PubMed ID: 31988459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental models for predicting drug absorption and metabolism.
    Alqahtani S; Mohamed LA; Kaddoumi A
    Expert Opin Drug Metab Toxicol; 2013 Oct; 9(10):1241-54. PubMed ID: 23687990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of permeability in drug ADME/PK, interactions and toxicity--presentation of a permeability-based classification system (PCS) for prediction of ADME/PK in humans.
    Fagerholm U
    Pharm Res; 2008 Mar; 25(3):625-38. PubMed ID: 17710514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building three-dimensional lung models for studying pharmacokinetics of inhaled drugs.
    Barros AS; Costa A; Sarmento B
    Adv Drug Deliv Rev; 2021 Mar; 170():386-395. PubMed ID: 32971227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PBPK models for the prediction of in vivo performance of oral dosage forms.
    Kostewicz ES; Aarons L; Bergstrand M; Bolger MB; Galetin A; Hatley O; Jamei M; Lloyd R; Pepin X; Rostami-Hodjegan A; Sjögren E; Tannergren C; Turner DB; Wagner C; Weitschies W; Dressman J
    Eur J Pharm Sci; 2014 Jun; 57():300-21. PubMed ID: 24060672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.
    Li XG; Chen MX; Zhao SQ; Wang XQ
    Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organs-on-a-chip: Current applications and consideration points for in vitro ADME-Tox studies.
    Ishida S
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):49-54. PubMed ID: 29398302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model.
    Darwich AS; Neuhoff S; Jamei M; Rostami-Hodjegan A
    Curr Drug Metab; 2010 Nov; 11(9):716-29. PubMed ID: 21189140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters.
    Smit C; De Hoogd S; Brüggemann RJM; Knibbe CAJ
    Expert Opin Drug Metab Toxicol; 2018 Mar; 14(3):275-285. PubMed ID: 29431542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates.
    Cavero I; Guillon JM; Holzgrefe HH
    Expert Opin Drug Saf; 2019 Aug; 18(8):651-677. PubMed ID: 31268355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetic-based multi-organ chip for recapitulating organ interactions.
    Sung JH
    Methods Cell Biol; 2018; 146():183-197. PubMed ID: 30037461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.