These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31794666)

  • 1. A Comprehensive Study on Self-Assembly and Gelation of C
    Hu T; Zhang Z; Hu H; Euston SR; Pan S
    Biomacromolecules; 2020 Feb; 21(2):670-679. PubMed ID: 31794666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coassembly of C
    Hu T; Zhang Z; Euston SR; Geng M; Pan S
    Biomacromolecules; 2020 Dec; 21(12):5256-5268. PubMed ID: 33201680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences.
    Ren P; Li J; Zhao L; Wang A; Wang M; Li J; Jian H; Li X; Yan X; Bai S
    ACS Appl Mater Interfaces; 2020 May; 12(19):21433-21440. PubMed ID: 32319760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-Selected C
    Hu T; Xu Y; Xu G; Pan S
    J Agric Food Chem; 2022 Jun; 70(23):7148-7157. PubMed ID: 35657010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dipeptide-polysaccharides hydrogels through co-assembly.
    Hu T; Xu Y; Xu G
    Food Chem; 2023 Oct; 422():136272. PubMed ID: 37141751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Dipeptide-Based Ambidextrous Supergelators: Minimalistic Rational Design, Structure-Gelation Studies, and In Situ Hydrogelation.
    Manchineella S; Murugan NA; Govindaraju T
    Biomacromolecules; 2017 Nov; 18(11):3581-3590. PubMed ID: 28856890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.
    Reddy SM; Shanmugam G; Duraipandy N; Kiran MS; Mandal AB
    Soft Matter; 2015 Nov; 11(41):8126-40. PubMed ID: 26338226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing gelation ability for a library of dipeptide gelators.
    Awhida S; Draper ER; McDonald TO; Adams DJ
    J Colloid Interface Sci; 2015 Oct; 455():24-31. PubMed ID: 26047582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel.
    Martin AD; Wojciechowski JP; Warren H; in het Panhuis M; Thordarson P
    Soft Matter; 2016 Mar; 12(10):2700-7. PubMed ID: 26860207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organogelation and hydrogelation of low-molecular-weight amphiphilic dipeptides: pH responsiveness in phase-selective gelation and dye removal.
    Kar T; Debnath S; Das D; Shome A; Das PK
    Langmuir; 2009 Aug; 25(15):8639-48. PubMed ID: 19338331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroactive organic dye incorporating dipeptides in the formation of self-assembled nanofibrous hydrogels.
    Liu YH; Hsu SM; Wu FY; Cheng H; Yeh MY; Lin HC
    Bioconjug Chem; 2014 Oct; 25(10):1794-800. PubMed ID: 25229206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-induced gelation of fluorenyl-9-methoxycarbonyl-l-lysine(fluorenyl-9-methoxycarbonyl)-OH and its dipeptide derivatives showing very low minimum gelation concentrations.
    Geng H; Ye L; Zhang AY; Shao Z; Feng ZG
    J Colloid Interface Sci; 2017 Mar; 490():665-676. PubMed ID: 27940033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of t-butyloxycarbonyl protected dipeptide methyl esters composed of leucine, isoleucine, and valine into highly organized structures from alcohol and aqueous alcohol mixtures.
    Subbalakshmi C; Basak P; Nagaraj R
    Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28589640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities.
    Samanta SK; Pal A; Bhattacharya S
    Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual Two-Step Assembly of a Minimalistic Dipeptide-Based Functional Hypergelator.
    Chakraborty P; Tang Y; Yamamoto T; Yao Y; Guterman T; Zilberzwige-Tal S; Adadi N; Ji W; Dvir T; Ramamoorthy A; Wei G; Gazit E
    Adv Mater; 2020 Mar; 32(9):e1906043. PubMed ID: 31984580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogels Based on Ag
    Hu Y; Xie D; Wu Y; Lin N; Song A; Hao J
    Chemistry; 2017 Nov; 23(62):15721-15728. PubMed ID: 28833801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking micellar structures to hydrogelation for salt-triggered dipeptide gelators.
    Cardoso AZ; Mears LL; Cattoz BN; Griffiths PC; Schweins R; Adams DJ
    Soft Matter; 2016 Apr; 12(15):3612-21. PubMed ID: 26963370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly and gelation properties of glycine/leucine Fmoc-dipeptides.
    Tang C; Ulijn RV; Saiani A
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):111. PubMed ID: 24085660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.