BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31794680)

  • 1. OMGS: Optical Map-Based Genome Scaffolding.
    Pan W; Jiang T; Lonardi S
    J Comput Biol; 2020 Apr; 27(4):519-533. PubMed ID: 31794680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novo&Stitch: accurate reconciliation of genome assemblies via optical maps.
    Pan W; Wanamaker SI; Ah-Fong AMV; Judelson HS; Lonardi S
    Bioinformatics; 2018 Jul; 34(13):i43-i51. PubMed ID: 29949964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate detection of chimeric contigs via Bionano optical maps.
    Pan W; Lonardi S
    Bioinformatics; 2019 May; 35(10):1760-1762. PubMed ID: 30295726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaffolding pre-assembled contigs using SSPACE.
    Boetzer M; Henkel CV; Jansen HJ; Butler D; Pirovano W
    Bioinformatics; 2011 Feb; 27(4):578-9. PubMed ID: 21149342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
    Peichel CL; Sullivan ST; Liachko I; White MA
    J Hered; 2017 Sep; 108(6):693-700. PubMed ID: 28821183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeat-aware evaluation of scaffolding tools.
    Mandric I; Knyazev S; Zelikovsky A
    Bioinformatics; 2018 Aug; 34(15):2530-2537. PubMed ID: 29547882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffolding of long read assemblies using long range contact information.
    Ghurye J; Pop M; Koren S; Bickhart D; Chin CS
    BMC Genomics; 2017 Jul; 18(1):527. PubMed ID: 28701198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative evaluation of genome assembly reconciliation tools.
    Alhakami H; Mirebrahim H; Lonardi S
    Genome Biol; 2017 May; 18(1):93. PubMed ID: 28521789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OMACC: an Optical-Map-Assisted Contig Connector for improving de novo genome assembly.
    Chen YM; Yu CH; Hwang CC; Liu T
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S7. PubMed ID: 24564959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.
    Staňková H; Hastie AR; Chan S; Vrána J; Tulpová Z; Kubaláková M; Visendi P; Hayashi S; Luo M; Batley J; Edwards D; Doležel J; Šimková H
    Plant Biotechnol J; 2016 Jul; 14(7):1523-31. PubMed ID: 26801360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data.
    Jiao WB; Accinelli GG; Hartwig B; Kiefer C; Baker D; Severing E; Willing EM; Piednoel M; Woetzel S; Madrid-Herrero E; Huettel B; Hümann U; Reinhard R; Koch MA; Swan D; Clavijo B; Coupland G; Schneeberger K
    Genome Res; 2017 May; 27(5):778-786. PubMed ID: 28159771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions.
    Burton JN; Adey A; Patwardhan RP; Qiu R; Kitzman JO; Shendure J
    Nat Biotechnol; 2013 Dec; 31(12):1119-25. PubMed ID: 24185095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SLIQ: simple linear inequalities for efficient contig scaffolding.
    Roy RS; Chen KC; Sengupta AM; Schliep A
    J Comput Biol; 2012 Oct; 19(10):1162-75. PubMed ID: 23057825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ntLink: A Toolkit for De Novo Genome Assembly Scaffolding and Mapping Using Long Reads.
    Coombe L; Warren RL; Wong J; Nikolic V; Birol I
    Curr Protoc; 2023 Apr; 3(4):e733. PubMed ID: 37039735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ScaffMatch: scaffolding algorithm based on maximum weight matching.
    Mandric I; Zelikovsky A
    Bioinformatics; 2015 Aug; 31(16):2632-8. PubMed ID: 25890305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.
    Madoui MA; Dossat C; d'Agata L; van Oeveren J; van der Vossen E; Aury JM
    BMC Bioinformatics; 2016 Mar; 17():115. PubMed ID: 26936254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Hi-C-Based Scaffolding Tools on Plant Genomes.
    Hou Y; Wang L; Pan W
    Genes (Basel); 2023 Nov; 14(12):. PubMed ID: 38136968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Refinement by Direct Mapping Reveals Assembly Inconsistencies near Hi-C Junctions.
    Marcolungo L; Vincenzi L; Ballottari M; Cecchin M; Cosentino E; Mignani T; Limongi A; Ferraris I; Orlandi M; Rossato M; Delledonne M
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.