These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31795074)

  • 1. A Classification Method for Select Defects in Power Transformers Based on the Acoustic Signals.
    Kunicki M; Wotzka D
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors.
    Castro B; Clerice G; Ramos C; Andreoli A; Baptista F; Campos F; Ulson J
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Low Frequency Signals Emitted by Power Transformers Using Sensors and Machine Learning Methods.
    Jancarczyk D; Bernaś M; Boczar T
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Analysis Applied to the Partial Discharges Identification in Dry-Type Transformers by Hall and Acoustic Emission Sensors.
    de Castro BA; Dos Santos VV; Lucas GB; Ardila-Rey JA; Riehl RR; Andreoli AL
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Acoustic Emission Sensor Optimized for Partial Discharge Monitoring in Power Transformers.
    Sikorski W
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the Influence of Measuring AE Sensor Type on the Effectiveness of OLTC Defect Classification.
    Wotzka D; Cichoń A
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power Transformers OLTC Condition Monitoring Based on Feature Extraction from Vibro-Acoustic Signals: Main Peaks and Euclidean Distance.
    Dabaghi-Zarandi F; Behjat V; Gauvin M; Picher P; Ezzaidi H; Fofana I
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic Sensors for Monitoring and Localizing Partial Discharge Signals in Oil-Immersed Transformers under Array Configuration.
    Wang Y; Zhao D; Jia Y; Wang S; Du Y; Li H; Zhang B
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Discharge Localization Using Time Reversal: Application to Power Transformers.
    Karami H; Azadifar M; Mostajabi A; Rubinstein M; Karami H; Gharehpetian GB; Rachidi F
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32150914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power Transformer Voltages Classification with Acoustic Signal in Various Noisy Environments.
    Kim M; Lee S
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution Transformer Parameters Detection Based on Low-Frequency Noise, Machine Learning Methods, and Evolutionary Algorithm.
    Jancarczyk D; Bernaś M; Boczar T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Cost Online Partial Discharge Monitoring System for Power Transformers.
    Sikorski W; Wielewski A
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences.
    Drexler P; Čáp M; Fiala P; Steinbauer M; Kadlec R; Kaška M; Kočiš L
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuzzy reinforcement learning based intelligent classifier for power transformer faults.
    Malik H; Sharma R; Mishra S
    ISA Trans; 2020 Jun; 101():390-398. PubMed ID: 31959374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Winding-to-ground fault location in power transformer windings using combination of discrete wavelet transform and back-propagation neural network.
    Chiradeja P; Ngaopitakkul A
    Sci Rep; 2022 Nov; 12(1):20157. PubMed ID: 36418527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Power Transformer Oil-Temperature on the Measurement Uncertainty of All-Acoustic Non-Iterative Partial Discharge Location.
    Polužanski V; Kartalović N; Nikolić B
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis.
    Tightiz L; Nasab MA; Yang H; Addeh A
    ISA Trans; 2020 Aug; 103():63-74. PubMed ID: 32197758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization for Dual Partial Discharge Sources in Transformer Oil Using Pressure-Balanced Fiber-Optic Ultrasonic Sensor Array.
    Liu F; Shi Y; Zhang S; Wang W
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Simulation Technique of Electromagnetic Wave Propagation in the Ultra High Frequency Range within Power Transformers.
    Umemoto T; Tenbohlen S
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review.
    Bustamante S; Manana M; Arroyo A; Castro P; Laso A; Martinez R
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31546981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.