BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31795151)

  • 1. Estimating Biomechanical Time-Series with Wearable Sensors: A Systematic Review of Machine Learning Techniques.
    Gurchiek RD; Cheney N; McGinnis RS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
    Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE
    Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review.
    Wei S; Wu Z
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-Driven Approach for Upper Limb Fatigue Estimation Based on Wearable Sensors.
    Otálora S; Segatto MEV; Monteiro ME; Múnera M; Díaz CAR; Cifuentes CA
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors.
    Sharifi-Renani M; Mahoor MH; Clary CW
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors.
    Camargo J; Flanagan W; Csomay-Shanklin N; Kanwar B; Young A
    IEEE Trans Biomed Eng; 2021 May; 68(5):1569-1578. PubMed ID: 33710951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Exploration of Machine-Learning Estimation of Ground Reaction Force from Wearable Sensor Data.
    Hendry D; Leadbetter R; McKee K; Hopper L; Wild C; O'Sullivan P; Straker L; Campbell A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of machine learning models' accuracy in predicting lower-limb joints' kinematics, kinetics, and muscle forces from wearable sensors.
    Moghadam SM; Yeung T; Choisne J
    Sci Rep; 2023 Mar; 13(1):5046. PubMed ID: 36977706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearables-Only Analysis of Muscle and Joint Mechanics: An EMG-Driven Approach.
    Gurchiek RD; Donahue N; Fiorentino NM; McGinnis RS
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):580-589. PubMed ID: 34351852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review.
    Jourdan T; Debs N; Frindel C
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Monitoring of Joint Angle and Muscle Activity.
    Cotton RJ; Rogers J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():258-263. PubMed ID: 31374639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-Learning-Based Methodology for Estimation of Shoulder Load in Wheelchair-Related Activities Using Wearables.
    Amrein S; Werner C; Arnet U; de Vries WHK
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features.
    Teufl W; Taetz B; Miezal M; Lorenz M; Pietschmann J; Jöllenbeck T; Fröhlich M; Bleser G
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable-Sensor System with AI Technology for Real-Time Biomechanical Feedback Training in Hammer Throw.
    Wang Y; Shan G; Li H; Wang L
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A meta-learning algorithm for respiratory flow prediction from FBG-based wearables in unrestrained conditions.
    Filosa M; Massari L; Ferraro D; D'Alesio G; D'Abbraccio J; Aliperta A; Presti DL; Di Tocco J; Zaltieri M; Massaroni C; Carrozza MC; Ferrarin M; Di Rienzo M; Schena E; Oddo CM
    Artif Intell Med; 2022 Aug; 130():102328. PubMed ID: 35809967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.
    Beltrame T; Amelard R; Wong A; Hughson RL
    J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning.
    Stetter BJ; Ringhof S; Krafft FC; Sell S; Stein T
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling.
    Matijevich ES; Volgyesi P; Zelik KE
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System and Machine-Learning Approach.
    Conforti I; Mileti I; Del Prete Z; Palermo E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.