These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31795187)

  • 1. Cooperative Localization Improvement Using Distance Information in Vehicular Ad Hoc Networks.
    Lobo F; Grael D; Oliveira H; Villas L; Almehmadi A; El-Khatib K
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrated Dead Reckoning with Cooperative Positioning Solution to Assist GPS NLOS Using Vehicular Communications.
    Nascimento PPLLD; Kimura BYL; Guidoni DL; Villas LA
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic and Dynamic Vehicle Model-Assisted Global Positioning Method for Autonomous Vehicles with Low-Cost GPS/Camera/In-Vehicle Sensors.
    Min H; Wu X; Cheng C; Zhao X
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multimetric, map-aware routing protocol for VANETs in urban areas.
    Tripp-Barba C; Urquiza-Aguiar L; Aguilar Igartua M; Rebollo-Monedero D; de la Cruz Llopis LJ; Mezher AM; Aguilar-Calderón JA
    Sensors (Basel); 2014 Jan; 14(2):2199-224. PubMed ID: 24476683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radar sensor based machine learning approach for precise vehicle position estimation.
    Sohail M; Khan AU; Sandhu M; Shoukat IA; Jafri M; Shin H
    Sci Rep; 2023 Aug; 13(1):13837. PubMed ID: 37620615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.
    Chen Y; Weng S; Guo W; Xiong N
    Sensors (Basel); 2016 Feb; 16(2):245. PubMed ID: 26907272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review on Vehicle Classification and Potential Use of Smart Vehicle-Assisted Techniques.
    Shokravi H; Shokravi H; Bakhary N; Heidarrezaei M; Rahimian Koloor SS; Petrů M
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Survey of Security Services, Attacks, and Applications for Vehicular Ad Hoc Networks (VANETs).
    Sheikh MS; Liang J; Wang W
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Distributed Cooperative Localization Strategy in Vehicular-to-Vehicular Networks.
    Kim M; Kim HK; Lee SH
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a low mobility IEEE 802.15.4 compliant VANET system for urban environments.
    Nazabal JA; Falcone F; Fernández-Valdivielso C; Matías IR
    Sensors (Basel); 2013 May; 13(6):7065-78. PubMed ID: 23760089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of GPS, Monocular Vision, and High Definition (HD) Map for Accurate Vehicle Localization.
    Cai H; Hu Z; Huang G; Zhu D; Su X
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissimilarity Metric Based on Local Neighboring Information and Genetic Programming for Data Dissemination in Vehicular Ad Hoc Networks (VANETs).
    Gutiérrez-Reina D; Sharma V; You I; Toral S
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TripSense: A Trust-Based Vehicular Platoon Crowdsensing Scheme with Privacy Preservation in VANETs.
    Hu H; Lu R; Huang C; Zhang Z
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27258287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAFE-MAC: Speed Aware Fairness Enabled MAC Protocol for Vehicular Ad-hoc Networks.
    Siddik MA; Moni SS; Alam MS; Johnson WA
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vehicle Trajectory Estimation Based on Fusion of Visual Motion Features and Deep Learning.
    Qu L; Dailey MN
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intersection-Based Link-Adaptive Beaconless Forwarding in Urban Vehicular Ad-Hoc Networks.
    Husain K; Awang A; Kamel N; Aïssa S
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Privacy-Preserving Vehicular Rogue Node Detection Scheme for Fog Computing.
    Al-Otaibi B; Al-Nabhan N; Tian Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Verifying Safety Messages Using Relative-Time and Zone Priority in Vehicular Ad Hoc Networks.
    Banani S; Gordon S; Thiemjarus S; Kittipiyakul S
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fuzzy-Based Context-Aware Misbehavior Detecting Scheme for Detecting Rogue Nodes in Vehicular Ad Hoc Network.
    Ghaleb FA; Saeed F; Alkhammash EH; Alghamdi NS; Al-Rimy BAS
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Empirical Study on V2X Enhanced Low-Cost GNSS Cooperative Positioning in Urban Environments.
    Schwarzbach P; Michler A; Tauscher P; Michler O
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.