BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31795373)

  • 1. Piezoresistive Multi-Walled Carbon Nanotube/Epoxy Strain Sensor with Pattern Design.
    Hwang MY; Han DH; Kang LH
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31795373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Important Fabrication Factors That Determine the Sensitivity of MWCNT/Epoxy Composite Strain Sensors.
    Hwang MY; Kang LH
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31771265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring.
    Choi G; Lee JW; Cha JY; Kim YJ; Choi YS; Schulz MJ; Moon CK; Lim KT; Kim SY; Kang I
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27472332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Spoke Type Torque Sensor Using Painting Carbon Nanotube Strain Sensors.
    Kim SY; Park SH; Choi BG; Kang IH; Park SW; Shin JW; Kim JH; Baek WK; Lim KT; Kim YJ; Song JB; Kang I
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1782-1786. PubMed ID: 29448659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration.
    Abot JL; Góngora-Rubio MR; Anike JC; Kiyono CY; Mello LAM; Cardoso VF; Rosa RLS; Kuebler DA; Brodeur GE; Alotaibi AH; Coene MP; Coene LM; Jean E; Santiago RC; Oliveira FHA; Rangel R; Thomas GP; Belay K; da Silva LW; Moura RT; Seabra AC; Silva ECN
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material.
    Benchirouf A; Müller C; Kanoun O
    Nanoscale Res Lett; 2016 Dec; 11(1):4. PubMed ID: 26732277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain Sensing Characteristics of Rubbery Carbon Nanotube Composite for Flexible Sensors.
    Choi GR; Park HK; Huh H; Kim YJ; Ham H; Kim HW; Lim KT; Kim SY; Kang I
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1607-11. PubMed ID: 27433630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study of Compressible and Conductive Vertically Aligned Carbon Nanotube Forest in Different Polymer Matrixes for High-Performance Piezoresistive Force Sensors.
    Paul SJ; Sharma I; Elizabeth I; Gahtori B; M MR; Titus SS; Chandra P; Gupta BK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16946-16958. PubMed ID: 32196304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoresistive Behaviour of Additively Manufactured Multi-Walled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites.
    Kim M; Jung J; Jung S; Moon YH; Kim DH; Kim JH
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.
    He Y; Ming Y; Li W; Li Y; Wu M; Song J; Li X; Liu H
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of the Piezoresistive Behavior of Poly (vinylidene fluoride)/Carbon Nanotube Composites by the Addition of Inorganic Semiconductor Nanoparticles.
    Kaplan M; Alp E; Krause B; Pötschke P
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors.
    Sahatiya P; Badhulika S
    Nanotechnology; 2017 Mar; 28(9):095501. PubMed ID: 28071605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unified equivalent circuit model for carbon nanotube-based nanocomposites.
    Zhao C; Yuan W; Zhao Y; Hu N; Gu B; Liu H; Alamusi
    Nanotechnology; 2018 Jul; 29(30):305503. PubMed ID: 29741497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Nanocomposite-Based Strain Sensor with Piezoelectric and Piezoresistive Properties.
    Sanati M; Sandwell A; Mostaghimi H; Park SS
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function.
    Herren B; Charara M; Saha MC; Altan MC; Liu Y
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain‑Sensing Properties of Multi‑Walled Carbon Nanotube/Polydimethylsiloxane Composites with Different Aspect Ratio and Filler Contents.
    Hur ON; Ha JH; Park SH
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32466376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites.
    Dai H; Thostenson ET; Schumacher T
    Sensors (Basel); 2015 Jul; 15(7):17728-47. PubMed ID: 26197323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Piezoresistive Tactile Sensor Based on Polymeric Nanocomposites with Grid-Type Microstructure.
    Lee DH; Chuang CH; Shaikh MO; Dai YS; Wang SY; Wen ZH; Yen CK; Liao CF; Pan CT
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33923849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exfoliated Graphite Nanoplatelet-Carbon Nanotube Hybrid Composites for Compression Sensing.
    Jeong C; Park YB
    ACS Omega; 2020 Feb; 5(6):2630-2639. PubMed ID: 32095686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretchable and sensitive sensor based on carbon nanotubes/polymer composite with serpentine shapes via molding technique.
    Fu X; Al-Jumaily AM; Ramos M; Meshkinzar A; Huang X
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1227-1241. PubMed ID: 31154936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.