BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 31795417)

  • 21. G-quadruplex located in the 5'UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance.
    Jodoin R; Carrier JC; Rivard N; Bisaillon M; Perreault JP
    Nucleic Acids Res; 2019 Nov; 47(19):10247-10266. PubMed ID: 31504805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of the internal ribosome entry sites (IRES) of prion protein gene.
    Luo XN; Song QQ; Yu J; Song J; Wang XL; Xia D; Sun P; Han J
    Int J Biochem Cell Biol; 2017 Dec; 93():46-51. PubMed ID: 29107182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets.
    Bi J; Chowdhry S; Wu S; Zhang W; Masui K; Mischel PS
    Nat Rev Cancer; 2020 Jan; 20(1):57-70. PubMed ID: 31806884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control.
    Kim HJ
    Biomolecules; 2019 Oct; 9(11):. PubMed ID: 31671902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential bicistronic gene translation mediated by the internal ribosome entry site element of encephalomyocarditis virus.
    Shen CR; Chen YS; Hwang YS; Chen HJ; Liu CL
    Biomed J; 2021 Dec; 44(6 Suppl 1):S54-S62. PubMed ID: 35747995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of a GPCR leads to eIF4G phosphorylation at the 5' cap and to IRES-dependent translation.
    León K; Boulo T; Musnier A; Morales J; Gauthier C; Dupuy L; Heyne S; Backofen R; Poupon A; Cormier P; Reiter E; Crepieux P
    J Mol Endocrinol; 2014 Jun; 52(3):373-82. PubMed ID: 24711644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation.
    Sriram A; Bohlen J; Teleman AA
    EMBO Rep; 2018 Oct; 19(10):. PubMed ID: 30224410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Focus on Translation Initiation of the HIV-1 mRNAs.
    de Breyne S; Ohlmann T
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30597859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current Understanding of Exosomal MicroRNAs in Glioma Immune Regulation and Therapeutic Responses.
    Peng J; Liang Q; Xu Z; Cai Y; Peng B; Li J; Zhang W; Kang F; Hong Q; Yan Y; Zhang M
    Front Immunol; 2021; 12():813747. PubMed ID: 35095909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting IRES-Mediated p53 Synthesis for Cancer Diagnosis and Therapeutics.
    Ji B; Harris BR; Liu Y; Deng Y; Gradilone SA; Cleary MP; Liu J; Yang DQ
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28054974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A researcher's guide to the galaxy of IRESs.
    Terenin IM; Smirnova VV; Andreev DE; Dmitriev SE; Shatsky IN
    Cell Mol Life Sci; 2017 Apr; 74(8):1431-1455. PubMed ID: 27853833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How are circRNAs translated by non-canonical initiation mechanisms?
    Diallo LH; Tatin F; David F; Godet AC; Zamora A; Prats AC; Garmy-Susini B; Lacazette E
    Biochimie; 2019 Sep; 164():45-52. PubMed ID: 31265859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus.
    May J; Johnson P; Saleem H; Simon AE
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28179526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences.
    Lozano G; Francisco-Velilla R; Martinez-Salas E
    Open Biol; 2018 Nov; 8(11):. PubMed ID: 30487301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The challenges and the promise of molecular targeted therapy in malignant gliomas.
    Wang H; Xu T; Jiang Y; Xu H; Yan Y; Fu D; Chen J
    Neoplasia; 2015 Mar; 17(3):239-55. PubMed ID: 25810009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cap-Independent Translational Control of Carcinogenesis.
    Walters B; Thompson SR
    Front Oncol; 2016; 6():128. PubMed ID: 27252909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. P4HB and PDIA3 are associated with tumor progression and therapeutic outcome of diffuse gliomas.
    Zou H; Wen C; Peng Z; Shao YΥ; Hu L; Li S; Li C; Zhou HH
    Oncol Rep; 2018 Feb; 39(2):501-510. PubMed ID: 29207176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of regulatable picornavirus IRESes as a test of current models of the mechanism of internal translation initiation.
    Pöyry TA; Hentze MW; Jackson RJ
    RNA; 2001 May; 7(5):647-60. PubMed ID: 11350029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rediscovering Potential Molecular Targets for Glioma Therapy Through the Analysis of the Cell of Origin, Microenvironment and Metabolism.
    Guo X; Wang T; Huang G; Li R; Da Costa C; Li H; Lv S; Li N
    Curr Cancer Drug Targets; 2021; 21(7):558-574. PubMed ID: 33949933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PI3 kinase mutations and mutational load as poor prognostic markers in diffuse glioma patients.
    Draaisma K; Wijnenga MM; Weenink B; Gao Y; Smid M; Robe P; van den Bent MJ; French PJ
    Acta Neuropathol Commun; 2015 Dec; 3():88. PubMed ID: 26699864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.