BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31795460)

  • 1. Calibration of the Pulse Signal Decay Effect of Full-Waveform Hyperspectral LiDAR.
    Zhang C; Gao S; Niu Z; Pei J; Bi K; Sun G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral lidar point cloud segmentation based on geometric and spectral information.
    Chen B; Shi S; Sun J; Gong W; Yang J; Du L; Guo K; Wang B; Chen B
    Opt Express; 2019 Aug; 27(17):24043-24059. PubMed ID: 31510299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prototype development and evaluation of a hyperspectral lidar optical receiving system.
    Qian L; Wu D; Liu D; Shi S; Song S; Gong W
    Opt Express; 2024 Mar; 32(7):10786-10800. PubMed ID: 38570944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter.
    Chen Y; Li W; Hyyppä J; Wang N; Jiang C; Meng F; Tang L; Puttonen E; Li C
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved waveform reconstruction and parameter accuracy retrieval for hyperspectral lidar data.
    Ilinca J; Kaasalainen S; Malkamäki T; Hakala T
    Appl Opt; 2019 Dec; 58(35):9624-9633. PubMed ID: 31873562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full waveform hyperspectral LiDAR for terrestrial laser scanning.
    Hakala T; Suomalainen J; Kaasalainen S; Chen Y
    Opt Express; 2012 Mar; 20(7):7119-27. PubMed ID: 22453394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.
    Li Z; Jupp DL; Strahler AH; Schaaf CB; Howe G; Hewawasam K; Douglas ES; Chakrabarti S; Cook TA; Paynter I; Saenz EJ; Schaefer M
    Sensors (Basel); 2016 Mar; 16(3):313. PubMed ID: 26950126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable hyperspectral lidar utilizing 5 GHz multichannel full waveform digitization.
    Malkamäki T; Kaasalainen S; Ilinca J
    Opt Express; 2019 Apr; 27(8):A468-A480. PubMed ID: 31052897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral missing color correction based on an adaptive parameter fitting model.
    Wang T; Liu D; Xue Z; Wan X
    Opt Express; 2023 Feb; 31(5):8561-8574. PubMed ID: 36859968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of active multispectral lidar for detecting low reflectance targets.
    Kaasalainen S; Malkamäki T
    Opt Express; 2020 Jan; 28(2):1408-1416. PubMed ID: 32121852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the utilization of novel spectral laser scanning for three-dimensional classification of vegetation elements.
    Li Z; Schaefer M; Strahler A; Schaaf C; Jupp D
    Interface Focus; 2018 Apr; 8(2):20170039. PubMed ID: 29503720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents.
    Li W; Niu Z; Sun G; Gao S; Wu M
    Opt Express; 2016 Mar; 24(5):4771-4785. PubMed ID: 29092306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.
    Qin H; Wang C; Zhao K; Xi X
    PLoS One; 2018; 13(5):e0197510. PubMed ID: 29813094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Range determination for generating point clouds from airborne small footprint LiDAR waveforms.
    Qin Y; Vu TT; Ban Y; Niu Z
    Opt Express; 2012 Nov; 20(23):25935-47. PubMed ID: 23187409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical system design for a hyperspectral imaging lidar using supercontinuum laser and its preliminary performance.
    Qian L; Wu D; Zhou X; Zhong L; Wei W; Wang Y; Shi S; Song S; Gong W; Liu D
    Opt Express; 2021 May; 29(11):17542-17553. PubMed ID: 34154295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions.
    Hancock S; Armston J; Hofton M; Sun X; Tang H; Duncanson LI; Kellner JR; Dubayah R
    Earth Space Sci; 2019 Feb; 6(2):294-310. PubMed ID: 31008149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-Waveform LiDAR Point Clouds Classification Based on Wavelet Support Vector Machine and Ensemble Learning.
    Lai X; Yuan Y; Li Y; Wang M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric calibration and radiometric correction of LiDAR data and their impact on the quality of derived products.
    Habib AF; Kersting AP; Shaker A; Yan WY
    Sensors (Basel); 2011; 11(9):9069-97. PubMed ID: 22164121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.