BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31795552)

  • 21. An immunocytochemical study of cytokeratin expression in human middle ear cholesteatoma.
    Chao WY; Huang CC
    Arch Otorhinolaryngol; 1989; 246(1):37-42. PubMed ID: 2472127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of inhibitor of DNA-binding (Id1) in hyperproliferation of keratinocytes: the pathological basis for middle ear cholesteatoma from chronic otitis media.
    Hamajima Y; Komori M; Preciado DA; Choo DI; Moribe K; Murakami S; Ondrey FG; Lin J
    Cell Prolif; 2010 Oct; 43(5):457-63. PubMed ID: 20887552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stem cells in middle ear cholesteatoma contribute to its pathogenesis.
    Nagel J; Wöllner S; Schürmann M; Brotzmann V; Müller J; Greiner JF; Goon P; Kaltschmidt B; Kaltschmidt C; Sudhoff H
    Sci Rep; 2018 Apr; 8(1):6204. PubMed ID: 29670222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of cytokeratins 13 and 16 in middle ear cholesteatoma.
    Sasaki H; Huang CC
    Otolaryngol Head Neck Surg; 1994 Mar; 110(3):310-7. PubMed ID: 7510866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MicroRNA-21 promotes the proliferation and invasion of cholesteatoma keratinocytes.
    Chen X; Li X; Qin Z
    Acta Otolaryngol; 2016 Dec; 136(12):1261-1266. PubMed ID: 27376830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Keratinocyte growth factor signaling promotes stem/progenitor cell proliferation under p63 expression during middle ear cholesteatoma formation.
    Yamamoto-Fukuda T; Akiyama N
    Curr Opin Otolaryngol Head Neck Surg; 2020 Oct; 28(5):291-295. PubMed ID: 32796271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of bone morphogenetic protein-2 messenger ribonucleic acid in cholesteatoma fibroblasts.
    Schmidt M; Schler G; Gruensfelder P; Hoppe F
    Otol Neurotol; 2002 May; 23(3):267-70. PubMed ID: 11981380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Platelet-derived growth factor in middle ear cholesteatoma.
    Fujioka O; Huang CC
    Eur Arch Otorhinolaryngol; 1994; 251(4):199-204. PubMed ID: 7917251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [New immunobiologic trends concerning etiopathogenicity of cholesteatoma].
    Bujía J
    An Otorrinolaringol Ibero Am; 1994; 21(2):199-206. PubMed ID: 7516122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Keratinocyte differentiation in acquired cholesteatoma and perforated tympanic membranes.
    Vennix PP; Kuijpers W; Peters TA; Tonnaer EL; Ramaekers FC
    Arch Otolaryngol Head Neck Surg; 1996 Aug; 122(8):825-32. PubMed ID: 8703383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of cytokines and cell cycle regulating substances in proliferation of cholesteatoma epithelium.
    Tanaka Y; Kojima H; Miyazaki H; Koga T; Moriyama H
    Laryngoscope; 1999 Jul; 109(7 Pt 1):1102-7. PubMed ID: 10401849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Expression of hypoxia-inducible factor-1alpha in middle ear cholesteatoma].
    Liu Y; Cui Y; Yu L; Zhang P
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2005 Jan; 19(1):4-6. PubMed ID: 15830692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Keratinocyte Growth Factor (KGF) Modulates Epidermal Progenitor Cell Kinetics through Activation of p63 in Middle Ear Cholesteatoma.
    Yamamoto-Fukuda T; Akiyama N; Takahashi M; Kojima H
    J Assoc Res Otolaryngol; 2018 Jun; 19(3):223-241. PubMed ID: 29549594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of PTHrP and RANKL in acquired middle ear cholesteatoma epithelium.
    Xie S; Pan Z; Yin T; Ren J; Liu W
    Acta Otolaryngol; 2020 May; 140(5):351-355. PubMed ID: 32108533
    [No Abstract]   [Full Text] [Related]  

  • 35. L1CAM-ILK-YAP Mechanotransduction Drives Proliferative Activity of Epithelial Cells in Middle Ear Cholesteatoma.
    Yamamoto-Fukuda T; Akiyama N; Kojima H
    Am J Pathol; 2020 Aug; 190(8):1667-1679. PubMed ID: 32360569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Possible participation of acidic pH in bone resorption in middle ear cholesteatoma.
    Nguyen KH; Suzuki H; Ohbuchi T; Wakasugi T; Koizumi H; Hashida K; Baba R; Morimoto H; Doi Y
    Laryngoscope; 2014 Jan; 124(1):245-50. PubMed ID: 24122656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased proliferation and migration of epithelium in advancing experimental cholesteatomas.
    Kim HJ; Tinling SP; Chole RA
    Otol Neurotol; 2002 Nov; 23(6):840-4. PubMed ID: 12438843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleoplasm staining patterns and cell cycle-associated expression of Ki-67 in middle ear cholesteatoma.
    Raynov AM; Moon SK; Choung YH; Hong SP; Park K
    Am J Otolaryngol; 2005; 26(5):296-301. PubMed ID: 16137526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Id1 in acquired middle ear cholesteatoma.
    Zhang QA; Hamajima Y; Zhang Q; Lin J
    Arch Otolaryngol Head Neck Surg; 2008 Mar; 134(3):306-10. PubMed ID: 18347258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of the IL-6/JAK/STAT3 signaling pathway in human middle ear cholesteatoma epithelium.
    Liu W; Xie S; Chen X; Rao X; Ren H; Hu B; Yin T; Xiang Y; Ren J
    Int J Clin Exp Pathol; 2014; 7(2):709-15. PubMed ID: 24551293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.