These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 31795644)
1. Analytical and numerical methods for efficient calculation of edge diffraction by an arbitrary incident signal. Nikolaou P; Menounou P J Acoust Soc Am; 2019 Nov; 146(5):3577. PubMed ID: 31795644 [TBL] [Abstract][Full Text] [Related]
2. Analytical model for predicting edge diffraction in the time domain. Menounou P; Nikolaou P J Acoust Soc Am; 2017 Dec; 142(6):3580. PubMed ID: 29289114 [TBL] [Abstract][Full Text] [Related]
3. Approximate time domain solution for studying infinite wedge diffraction, its parameters, and characteristics. Menounou P; Spiropoulos MI; Nikolaou P J Acoust Soc Am; 2023 Feb; 153(2):1399. PubMed ID: 36859139 [TBL] [Abstract][Full Text] [Related]
4. Sound diffraction by knife-edges of finite length: Integral solution, dimensionless parameters, and explicit formulas. Nikolaou P; Menounou P J Acoust Soc Am; 2024 Mar; 155(3):1719-1734. PubMed ID: 38436423 [TBL] [Abstract][Full Text] [Related]
5. Computation of edge diffraction for more accurate room acoustics auralization. Torres RR; Svensson UP; Kleiner M J Acoust Soc Am; 2001 Feb; 109(2):600-10. PubMed ID: 11248967 [TBL] [Abstract][Full Text] [Related]
6. Directive line source model: a new model for sound diffraction by half planes and wedges. Menounou P; Busch-Vishniac IJ; Blackstock DT J Acoust Soc Am; 2000 Jun; 107(6):2973-86. PubMed ID: 10875343 [TBL] [Abstract][Full Text] [Related]
7. Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane. Ochmann M J Acoust Soc Am; 2011 Jun; 129(6):3502-12. PubMed ID: 21682377 [TBL] [Abstract][Full Text] [Related]
8. The acoustical impulse response of a line source of finite length above an absorbing plane. Ochmann M J Acoust Soc Am; 2020 May; 147(5):3691. PubMed ID: 32486819 [TBL] [Abstract][Full Text] [Related]
9. Numerical Evaluation of Diffraction Integrals. Mielenz KD J Res Natl Inst Stand Technol; 2000; 105(4):581-7. PubMed ID: 27551626 [TBL] [Abstract][Full Text] [Related]
10. Acoustic diffraction by deformed edges of finite length: theory and experiment. Stanton TK; Chu D; Norton GV J Acoust Soc Am; 2007 Dec; 122(6):3167-76. PubMed ID: 18247729 [TBL] [Abstract][Full Text] [Related]
11. Exact solution for the acoustical impulse response of a line source above an absorbing plane. Ochmann M J Acoust Soc Am; 2018 Sep; 144(3):1539. PubMed ID: 30424661 [TBL] [Abstract][Full Text] [Related]
12. Casimir interaction of rodlike particles in a two-dimensional critical system. Eisenriegler E; Burkhardt TW Phys Rev E; 2016 Sep; 94(3-1):032130. PubMed ID: 27739769 [TBL] [Abstract][Full Text] [Related]
13. Treatment of frequency-dependent admittance boundary conditions in transient acoustic finite/infinite-element models. Van den Nieuwenhof B; Coyette JP J Acoust Soc Am; 2001 Oct; 110(4):1743-51. PubMed ID: 11681354 [TBL] [Abstract][Full Text] [Related]
14. A computational approach to edge detection. Canny J IEEE Trans Pattern Anal Mach Intell; 1986 Jun; 8(6):679-98. PubMed ID: 21869365 [TBL] [Abstract][Full Text] [Related]
15. An integral equation formulation for the diffraction from convex plates and polyhedra. Asheim A; Svensson UP J Acoust Soc Am; 2013 Jun; 133(6):3681-91. PubMed ID: 23742323 [TBL] [Abstract][Full Text] [Related]
16. Higher-order acoustic diffraction by edges of finite thickness. Chu D; Stanton TK; Pierce AD J Acoust Soc Am; 2007 Dec; 122(6):3177-94. PubMed ID: 18247730 [TBL] [Abstract][Full Text] [Related]
17. Diffraction of a spherical wave by a hard half-plane: Approximation of the edge field in the frequency domain. Ouis D J Acoust Soc Am; 2019 Jan; 145(1):400. PubMed ID: 30710954 [TBL] [Abstract][Full Text] [Related]
18. ̀Spatial impulse response of a rectangular double curved transducer. Bæk DB; Jensen JA; Willatzen M J Acoust Soc Am; 2012 Apr; 131(4):2730-41. PubMed ID: 22501052 [TBL] [Abstract][Full Text] [Related]
19. Numerical spatial impulse response calculations for a circular piston radiating in a lossy medium. Murray DA; McGough RJ J Acoust Soc Am; 2022 May; 151(5):3104. PubMed ID: 35649899 [TBL] [Abstract][Full Text] [Related]
20. Discretization of continuous convolution operators for accurate modeling of wave propagation in digital holography. Chacko N; Liebling M; Blu T J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):2012-20. PubMed ID: 24322857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]