These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31795672)

  • 1. Mel-frequency cepstral coefficients derived using the zero-time windowing spectrum for classification of phonation types in singing.
    Kadiri SR; Alku P
    J Acoust Soc Am; 2019 Nov; 146(5):EL418. PubMed ID: 31795672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep neural architectures for dialect classification with single frequency filtering and zero-time windowing feature representations.
    Kethireddy R; Kadiri SR; Gangashetty SV
    J Acoust Soc Am; 2022 Feb; 151(2):1077. PubMed ID: 35232068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voice Disorder Classification Based on Multitaper Mel Frequency Cepstral Coefficients Features.
    Eskidere Ö; Gürhanlı A
    Comput Math Methods Med; 2015; 2015():956249. PubMed ID: 26681977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards Automated Vocal Mode Classification in Healthy Singing Voice-An XGBoost Decision Tree-Based Machine Learning Classifier.
    Sol J; Aaen M; Sadolin C; Ten Bosch L
    J Voice; 2023 Nov; ():. PubMed ID: 37953088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of cepstral coefficients to other voice evaluation parameters in patients with occupational dysphonia].
    Niebudek-Bogusz E; Strumiłło P; Wiktorowicz J; Sliwińska-Kowalska M
    Med Pr; 2013; 64(6):805-16. PubMed ID: 24645566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of phonation types in singing voice using wavelet scattering network-based features.
    Mittapalle KR; Alku P
    JASA Express Lett; 2024 Jun; 4(6):. PubMed ID: 38847582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modal and non-modal voice quality classification using acoustic and electroglottographic features.
    Borsky M; Mehta DD; Van Stan JH; Gudnason J
    IEEE/ACM Trans Audio Speech Lang Process; 2017 Dec; 25(12):2281-2291. PubMed ID: 33748320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction.
    Shao X; Milner B
    J Acoust Soc Am; 2005 Aug; 118(2):1134-43. PubMed ID: 16158667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of excitation source information for shouted and normal speech classification.
    Baghel S; Prasanna SRM; Guha P
    J Acoust Soc Am; 2020 Feb; 147(2):1250. PubMed ID: 32113325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cepstral Characteristics of Voice in Indian Female Classical Carnatic Singers.
    Balasubramanium RK; Shastry A; Singh M; Bhat JS
    J Voice; 2015 Nov; 29(6):693-5. PubMed ID: 25795361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Speaking and Singing Voices Using Bioimpedance Measurements and Deep Learning.
    Donati E; Chousidis C; Ribeiro HM; Russo N
    J Voice; 2023 May; ():. PubMed ID: 37156686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of acoustic parameters for consonant voicing classification in clean and telephone speech.
    Lee SM; Choi JY
    J Acoust Soc Am; 2012 Mar; 131(3):EL197-202. PubMed ID: 22423808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices.
    Arias-Londoño JD; Godino-Llorente JI; Markaki M; Stylianou Y
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):60-9. PubMed ID: 21073260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of three basic female voice types in female singing students by voice range profile-derived parameters.
    Lycke H; Decoster W; Ivanova A; Van Hulle MM; de Jong FI
    Folia Phoniatr Logop; 2012; 64(2):80-6. PubMed ID: 22507900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Neurogenic Voice Disorders Using the Fisher Vector Representation of Cepstral Features.
    Yagnavajjula MK; Alku P; Rao KS; Mitra P
    J Voice; 2022 Nov; ():. PubMed ID: 36424242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorimotor Mismapping in Poor-pitch Singing.
    He H; Zhang WD
    J Voice; 2017 Sep; 31(5):645.e23-645.e32. PubMed ID: 28347617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voice Characteristics of Young Girl Role in Kunqu Opera.
    Dong L; Kong J
    J Voice; 2019 Nov; 33(6):945.e19-945.e25. PubMed ID: 30115578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pitch matching accuracy of trained singers, untrained subjects with talented singing voices, and untrained subjects with nontalented singing voices in conditions of varying feedback.
    Watts C; Murphy J; Barnes-Burroughs K
    J Voice; 2003 Jun; 17(2):185-94. PubMed ID: 12825651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of the auditory system on phonation: a review.
    Selleck MA; Sataloff RT
    J Voice; 2014 Nov; 28(6):688-93. PubMed ID: 24962229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.