BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31795681)

  • 1. Refining algorithmic estimation of relative fundamental frequency: Accounting for sample characteristics and fundamental frequency estimation method.
    Vojtech JM; Segina RK; Buckley DP; Kolin KR; Tardif MC; Noordzij JP; Stepp CE
    J Acoust Soc Am; 2019 Nov; 146(5):3184. PubMed ID: 31795681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of an Algorithm for Semi-automated Estimation of Voice Relative Fundamental Frequency.
    Lien YS; Heller Murray ES; Calabrese CR; Michener CM; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    Ann Otol Rhinol Laryngol; 2017 Oct; 126(10):712-716. PubMed ID: 28849664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Relative Fundamental Frequency Algorithms for Use With Neck-Surface Accelerometer Signals.
    Groll MD; Vojtech JM; Hablani S; Mehta DD; Buckley DP; Noordzij JP; Stepp CE
    J Voice; 2022 Mar; 36(2):156-169. PubMed ID: 32653267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test-Retest Reliability of Relative Fundamental Frequency and Conventional Acoustic, Aerodynamic, and Perceptual Measures in Individuals With Healthy Voices.
    Park Y; Stepp CE
    J Speech Lang Hear Res; 2019 Jun; 62(6):1707-1718. PubMed ID: 31181173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between perception of vocal effort and relative fundamental frequency during voicing offset and onset.
    Stepp CE; Sawin DE; Eadie TL
    J Speech Lang Hear Res; 2012 Dec; 55(6):1887-96. PubMed ID: 22615477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice Relative Fundamental Frequency Via Neck-Skin Acceleration in Individuals With Voice Disorders.
    Lien YA; Calabrese CR; Michener CM; Murray EH; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    J Speech Lang Hear Res; 2015 Oct; 58(5):1482-7. PubMed ID: 26134171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated estimation of relative fundamental frequency.
    Lien YA; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2136-9. PubMed ID: 24110143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pitch Strength as an Outcome Measure for Treatment of Dysphonia.
    Kopf LM; Jackson-Menaldi C; Rubin AD; Skeffington J; Hunter EJ; Skowronski MD; Shrivastav R
    J Voice; 2017 Nov; 31(6):691-696. PubMed ID: 28318967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative Fundamental Frequency Distinguishes Between Phonotraumatic and Non-Phonotraumatic Vocal Hyperfunction.
    Heller Murray ES; Lien YS; Van Stan JH; Mehta DD; Hillman RE; Pieter Noordzij J; Stepp CE
    J Speech Lang Hear Res; 2017 Jun; 60(6):1507-1515. PubMed ID: 28595317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual and Acoustic Assessment of Strain Using Synthetically Modified Voice Samples.
    Park Y; Cádiz MD; Nagle KF; Stepp CE
    J Speech Lang Hear Res; 2020 Dec; 63(12):3897-3908. PubMed ID: 33151770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Adventitious Acute Vocal Trauma: Relative Fundamental Frequency and Listener Perception.
    Murray ES; Hands GL; Calabrese CR; Stepp CE
    J Voice; 2016 Mar; 30(2):177-85. PubMed ID: 26028369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative Fundamental Frequency in Children With and Without Vocal Fold Nodules.
    Heller Murray ES; Segina RK; Woodnorth GH; Stepp CE
    J Speech Lang Hear Res; 2020 Feb; 63(2):361-371. PubMed ID: 32073342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of vocal hyperfunction on relative fundamental frequency during voicing offset and onset.
    Stepp CE; Hillman RE; Heaton JT
    J Speech Lang Hear Res; 2010 Oct; 53(5):1220-6. PubMed ID: 20643798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Cutoff Scores for Acoustic Indices of Vocal Hyperfunction That Combine Relative Fundamental Frequency and Cepstral Peak Prominence.
    Kapsner-Smith MR; Díaz-Cádiz ME; Vojtech JM; Buckley DP; Mehta DD; Hillman RE; Tracy LF; Noordzij JP; Eadie TL; Stepp CE
    J Speech Lang Hear Res; 2022 Apr; 65(4):1349-1369. PubMed ID: 35263546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic Identification of the Voicing Boundary during Intervocalic Offsets and Onsets based on Vocal Fold Vibratory Measures.
    Vojtech JM; Cilento DD; Luong AT; Noordzij JP; Diaz-Cadiz M; Groll MD; Buckley DP; McKenna VS; Noordzij JP; Stepp CE
    Appl Sci (Basel); 2021 May; 11(9):. PubMed ID: 36188437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effectiveness of Low-Level Light Therapy in Attenuating Vocal Fatigue.
    Kagan LS; Heaton JT
    J Voice; 2017 May; 31(3):384.e15-384.e23. PubMed ID: 27839705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of Stress Type, Vowel Identity, Baseline f
    Park Y; Stepp CE
    J Voice; 2019 Sep; 33(5):603-610. PubMed ID: 30078521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic correlate of vocal effort in spasmodic dysphonia.
    Eadie TL; Stepp CE
    Ann Otol Rhinol Laryngol; 2013 Mar; 122(3):169-76. PubMed ID: 23577569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering.
    Tsanas A; Zañartu M; Little MA; Fox C; Ramig LO; Clifford GD
    J Acoust Soc Am; 2014 May; 135(5):2885-901. PubMed ID: 24815269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual Monitoring of Vocal Effort With Relative Fundamental Frequency: Relationships With Aerodynamics and Listener Perception.
    Lien YA; Michener CM; Eadie TL; Stepp CE
    J Speech Lang Hear Res; 2015 Jun; 58(3):566-75. PubMed ID: 25675090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.