BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31795681)

  • 21. Modeling of Breathy Voice Quality Using Pitch-strength Estimates.
    Eddins DA; Anand S; Camacho A; Shrivastav R
    J Voice; 2016 Nov; 30(6):774.e1-774.e7. PubMed ID: 26775221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vocal fold kinematics and relative fundamental frequency as a function of obstruent type and speaker age.
    Park Y; Wang F; Díaz-Cádiz M; Vojtech JM; Groll MD; Stepp CE
    J Acoust Soc Am; 2021 Apr; 149(4):2189. PubMed ID: 33940922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of voice relative fundamental frequency estimates derived from an accelerometer signal and low-pass filtered and unprocessed microphone signals.
    Lien YA; Stepp CE
    J Acoust Soc Am; 2014 May; 135(5):2977-85. PubMed ID: 24815277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal.
    Calawerts WM; Lin L; Sprott JC; Jiang JJ
    J Voice; 2017 Jan; 31(1):16-23. PubMed ID: 26920858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vocal Effects in Military Students Submitted to an Intense Recruit Training: A Pilot Study.
    Nascimento CL; Constantini AC; Mourão LF
    J Voice; 2016 Jan; 30(1):61-9. PubMed ID: 26028370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative Fundamental Frequency in Individuals with Globus Syndrome and Muscle Tension Dysphagia.
    Buckley DP; Vojtech JM; Stepp CE
    J Voice; 2024 May; 38(3):612-618. PubMed ID: 34823980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vocal Characteristics of Elderly Women Engaged in Aerobics in Private Institutions of Salvador, Bahia.
    Colman Machado de Machado F; Cielo CA; Lessa MM; Barbosa LH
    J Voice; 2016 Jan; 30(1):127.e9-19. PubMed ID: 25795360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fundamental Frequency Estimation of Low-quality Electroglottographic Signals.
    Herbst CT; Dunn JC
    J Voice; 2019 Jul; 33(4):401-411. PubMed ID: 29861292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics.
    Herbst CT; Hertegard S; Zangger-Borch D; Lindestad PÅ
    Logoped Phoniatr Vocol; 2017 Apr; 42(1):29-38. PubMed ID: 27079680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the Clinical Utility of Relative Fundamental Frequency as an Objective Measure of Vocal Hyperfunction.
    Roy N; Fetrow RA; Merrill RM; Dromey C
    J Speech Lang Hear Res; 2016 Oct; 59(5):1002-1017. PubMed ID: 27768175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fundamental frequency perturbation observed in sustained phonation.
    Horii Y
    J Speech Hear Res; 1979 Mar; 22(1):5-19. PubMed ID: 502500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perceptual-auditory and Acoustic Analysis of Air Traffic Controllers' Voices Pre- and Postshift.
    Villar AC; Korn GP; Azevedo RR
    J Voice; 2016 Nov; 30(6):768.e11-768.e15. PubMed ID: 26778327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physics of phonation offset: Towards understanding relative fundamental frequency observations.
    Serry MA; Stepp CE; Peterson SD
    J Acoust Soc Am; 2021 May; 149(5):3654. PubMed ID: 34241131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speech Adjustments for Room Acoustics and Their Effects on Vocal Effort.
    Bottalico P
    J Voice; 2017 May; 31(3):392.e1-392.e12. PubMed ID: 28029555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Relationship Between Relative Fundamental Frequency and a Kinematic Estimate of Laryngeal Stiffness in Healthy Adults.
    McKenna VS; Heller Murray ES; Lien YS; Stepp CE
    J Speech Lang Hear Res; 2016 Dec; 59(6):1283-1294. PubMed ID: 27936279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes After Voice Therapy in Acoustic Voice Analysis of Chinese Patients With Voice Disorders.
    Lu D; Chen F; Yang H; Yu R; Zhou Q; Zhang X; Ren J; Zheng Y; Zhang X; Zou J; Wang H; Liu J
    J Voice; 2018 May; 32(3):386.e1-386.e9. PubMed ID: 28606663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tracking change in dysphonia: a case study.
    Schneider P
    J Voice; 1993 Jun; 7(2):179-88. PubMed ID: 8353633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of voice acoustic parameters related to the vocal-loading test in professionally active teachers with dysphonia.
    Niebudek-Bogusz E; Kotyło P; Sliwińska-Kowalska M
    Int J Occup Med Environ Health; 2007; 20(1):25-30. PubMed ID: 17708015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in Relative Fundamental Frequency Under Increased Cognitive Load in Individuals With Healthy Voices.
    Dahl KL; Stepp CE
    J Speech Lang Hear Res; 2021 Apr; 64(4):1189-1196. PubMed ID: 33788635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.