These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31795726)

  • 1. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis.
    Moutal A; Kalinin S; Kowal K; Marangoni N; Dupree J; Lin SX; Lis K; Lisi L; Hensley K; Khanna R; Feinstein DL
    ASN Neuro; 2019; 11():1759091419892090. PubMed ID: 31795726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation.
    Petratos S; Ozturk E; Azari MF; Kenny R; Lee JY; Magee KA; Harvey AR; McDonald C; Taghian K; Moussa L; Mun Aui P; Siatskas C; Litwak S; Fehlings MG; Strittmatter SM; Bernard CC
    Brain; 2012 Jun; 135(Pt 6):1794-818. PubMed ID: 22544872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astrogliosis in EAE spinal cord: derivation from radial glia, and relationships to oligodendroglia.
    Bannerman P; Hahn A; Soulika A; Gallo V; Pleasure D
    Glia; 2007 Jan; 55(1):57-64. PubMed ID: 17009237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lanthionine ketimine ester provides benefit in a mouse model of multiple sclerosis.
    Dupree JL; Polak PE; Hensley K; Pelligrino D; Feinstein DL
    J Neurochem; 2015 Jul; 134(2):302-14. PubMed ID: 25846048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered neuronal expression of TASK1 and TASK3 potassium channels in rodent and human autoimmune CNS inflammation.
    Meuth SG; Kanyshkov T; Melzer N; Bittner S; Kieseier BC; Budde T; Wiendl H
    Neurosci Lett; 2008 Dec; 446(2-3):133-8. PubMed ID: 18824070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.
    Mao P; Manczak M; Shirendeb UP; Reddy PH
    Biochim Biophys Acta; 2013 Dec; 1832(12):2322-31. PubMed ID: 24055980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in spinal cord stiffness in the course of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.
    Pyka-Fościak G; Zemła J; Lis GJ; Litwin JA; Lekka M
    Arch Biochem Biophys; 2020 Feb; 680():108221. PubMed ID: 31816310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination.
    Lee JY; Kim MJ; Thomas S; Oorschot V; Ramm G; Aui PM; Sekine Y; Deliyanti D; Wilkinson-Berka J; Niego B; Harvey AR; Theotokis P; McLean C; Strittmatter SM; Petratos S
    J Neurosci; 2019 Jul; 39(28):5562-5580. PubMed ID: 31061088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuregulin in neuron/glial interactions in the central nervous system. GGF2 diminishes autoimmune demyelination, promotes oligodendrocyte progenitor expansion, and enhances remyelination.
    Marchionni MA; Cannella B; Hoban C; Gao YL; Garcia-Arenas R; Lawson D; Happel E; Noel F; Tofilon P; Gwynne D; Raine CS
    Adv Exp Med Biol; 1999; 468():283-95. PubMed ID: 10635037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model.
    Vergo S; Craner MJ; Etzensperger R; Attfield K; Friese MA; Newcombe J; Esiri M; Fugger L
    Brain; 2011 Feb; 134(Pt 2):571-84. PubMed ID: 21233144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nav1.5 in astrocytes plays a sex-specific role in clinical outcomes in a mouse model of multiple sclerosis.
    Pappalardo LW; Samad OA; Liu S; Zwinger PJ; Black JA; Waxman SG
    Glia; 2018 Oct; 66(10):2174-2187. PubMed ID: 30194875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis.
    Morquette B; Juźwik CA; Drake SS; Charabati M; Zhang Y; Lécuyer MA; Galloway DA; Dumas A; de Faria Junior O; Paradis-Isler N; Bueno M; Rambaldi I; Zandee S; Moore C; Bar-Or A; Vallières L; Prat A; Fournier AE
    Brain; 2019 Oct; 142(10):2979-2995. PubMed ID: 31412103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis.
    Smerjac SM; Bizzozero OA
    J Neurochem; 2008 May; 105(3):763-72. PubMed ID: 18088377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysfunctional RNA-binding protein biology and neurodegeneration in experimental autoimmune encephalomyelitis in female mice.
    Salapa HE; Libner CD; Levin MC
    J Neurosci Res; 2020 Apr; 98(4):704-717. PubMed ID: 31755578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [GAP-43 and its proteolytic fragment in spinal cord cells of rats with experimental autoimmune encephalomyelitis].
    Tikhomirova MS; Karpenko MN; Kirik OV; Sukhorukova EG; Korzhevskiĭ DÉ; Klimenko VM
    Ross Fiziol Zh Im I M Sechenova; 2015 Jan; 101(1):74-84. PubMed ID: 25868328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutrophil-selective deletion of Cxcr2 protects against CNS neurodegeneration in a mouse model of multiple sclerosis.
    Khaw YM; Cunningham C; Tierney A; Sivaguru M; Inoue M
    J Neuroinflammation; 2020 Feb; 17(1):49. PubMed ID: 32019585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment With CD52 Antibody Protects Neurons in Experimental Autoimmune Encephalomyelitis Mice During the Recovering Phase.
    Hao W; Luo Q; Menger MD; Fassbender K; Liu Y
    Front Immunol; 2021; 12():792465. PubMed ID: 34975892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis.
    Sankavaram SR; Svensson MA; Olsson T; Brundin L; Johansson CB
    PLoS One; 2015; 10(7):e0133903. PubMed ID: 26207625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-37 exerts therapeutic effects in experimental autoimmune encephalomyelitis through the receptor complex IL-1R5/IL-1R8.
    Sánchez-Fernández A; Zandee S; Amo-Aparicio J; Charabati M; Prat A; Garlanda C; Eisenmesser EZ; Dinarello CA; López-Vales R
    Theranostics; 2021; 11(1):1-13. PubMed ID: 33391457
    [No Abstract]   [Full Text] [Related]  

  • 20. Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in Multiple Sclerosis.
    Uchida Y; Sumiya T; Tachikawa M; Yamakawa T; Murata S; Yagi Y; Sato K; Stephan A; Ito K; Ohtsuki S; Couraud PO; Suzuki T; Terasaki T
    Mol Neurobiol; 2019 Mar; 56(3):2039-2056. PubMed ID: 29984400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.