These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 31795915)

  • 1. Lignin biosynthesis: old roads revisited and new roads explored.
    Dixon RA; Barros J
    Open Biol; 2019 Dec; 9(12):190215. PubMed ID: 31795915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
    Grabber JH; Schatz PF; Kim H; Lu F; Ralph J
    BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly.
    Liu CJ
    Mol Plant; 2012 Mar; 5(2):304-17. PubMed ID: 22307199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An engineered monolignol 4-o-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis.
    Zhang K; Bhuiya MW; Pazo JR; Miao Y; Kim H; Ralph J; Liu CJ
    Plant Cell; 2012 Jul; 24(7):3135-52. PubMed ID: 22851762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolignol export by diffusion down a polymerization-induced concentration gradient.
    Perkins ML; Schuetz M; Unda F; Chen KT; Bally MB; Kulkarni JA; Yan Y; Pico J; Castellarin SD; Mansfield SD; Samuels AL
    Plant Cell; 2022 Apr; 34(5):2080-2095. PubMed ID: 35167693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolignol pathway 4-coumaric acid:coenzyme A ligases in Populus trichocarpa: novel specificity, metabolic regulation, and simulation of coenzyme A ligation fluxes.
    Chen HC; Song J; Williams CM; Shuford CM; Liu J; Wang JP; Li Q; Shi R; Gokce E; Ducoste J; Muddiman DC; Sederoff RR; Chiang VL
    Plant Physiol; 2013 Mar; 161(3):1501-16. PubMed ID: 23344904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity.
    Jeon HS; Jang E; Kim J; Kim SH; Lee MH; Nam MH; Tobimatsu Y; Park OK
    Autophagy; 2023 Feb; 19(2):597-615. PubMed ID: 35652914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.).
    Chen F; Srinivasa Reddy MS; Temple S; Jackson L; Shadle G; Dixon RA
    Plant J; 2006 Oct; 48(1):113-24. PubMed ID: 16972868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Key Role for Apoplastic H
    Laitinen T; Morreel K; Delhomme N; Gauthier A; Schiffthaler B; Nickolov K; Brader G; Lim KJ; Teeri TH; Street NR; Boerjan W; Kärkönen A
    Plant Physiol; 2017 Jul; 174(3):1449-1475. PubMed ID: 28522458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transport of monomers during lignification in plants: anything goes but how?
    Perkins M; Smith RA; Samuels L
    Curr Opin Biotechnol; 2019 Apr; 56():69-74. PubMed ID: 30347315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis.
    Gang DR; Costa MA; Fujita M; Dinkova-Kostova AT; Wang HB; Burlat V; Martin W; Sarkanen S; Davin LB; Lewis NG
    Chem Biol; 1999 Mar; 6(3):143-51. PubMed ID: 10074466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignin biosynthesis.
    Boerjan W; Ralph J; Baucher M
    Annu Rev Plant Biol; 2003; 54():519-46. PubMed ID: 14503002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequestration and transport of lignin monomeric precursors.
    Liu CJ; Miao YC; Zhang KW
    Molecules; 2011 Jan; 16(1):710-27. PubMed ID: 21245806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BLISS: Shining a light on lignification in plants.
    Simon C; Lion C; Huss B; Blervacq AS; Spriet C; Guérardel Y; Biot C; Hawkins S
    Plant Signal Behav; 2017 Aug; 12(8):e1359366. PubMed ID: 28786751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin polymerization: how do plants manage the chemistry so well?
    Tobimatsu Y; Schuetz M
    Curr Opin Biotechnol; 2019 Apr; 56():75-81. PubMed ID: 30359808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant cell wall lignification and monolignol metabolism.
    Wang Y; Chantreau M; Sibout R; Hawkins S
    Front Plant Sci; 2013; 4():220. PubMed ID: 23847630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of grass-specific enzyme that acylates monolignols with p-coumarate.
    Withers S; Lu F; Kim H; Zhu Y; Ralph J; Wilkerson CG
    J Biol Chem; 2012 Mar; 287(11):8347-55. PubMed ID: 22267741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biosynthesis of monolignols: a "metabolic grid", or independent pathways to guaiacyl and syringyl units?
    Dixon RA; Chen F; Guo D; Parvathi K
    Phytochemistry; 2001 Aug; 57(7):1069-84. PubMed ID: 11430980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulatory role of shikimate in plant phenylalanine metabolism.
    Adams ZP; Ehlting J; Edwards R
    J Theor Biol; 2019 Feb; 462():158-170. PubMed ID: 30412698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.