BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31796052)

  • 21. Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma.
    Galamb O; Kalmár A; Barták BK; Patai ÁV; Leiszter K; Péterfia B; Wichmann B; Valcz G; Veres G; Tulassay Z; Molnár B
    World J Gastroenterol; 2016 Dec; 22(47):10325-10340. PubMed ID: 28058013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrative proteomics and transcriptomics identify novel invasive-related biomarkers of non-functioning pituitary adenomas.
    Yu SY; Hong LC; Feng J; Wu YT; Zhang YZ
    Tumour Biol; 2016 Jul; 37(7):8923-30. PubMed ID: 26753958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Important Invasion-Related Genes in Non-functional Pituitary Adenomas.
    Joshi H; Vastrad B; Vastrad C
    J Mol Neurosci; 2019 Aug; 68(4):565-589. PubMed ID: 30982163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of cold-inducible RNA-binding protein (CIRP) in pituitary adenoma and its relationships with tumor recurrence.
    Wang M; Zhang H; Heng X; Pang Q; Sun A
    Med Sci Monit; 2015 May; 21():1256-60. PubMed ID: 25934796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functions and Mechanisms of Tumor Necrosis Factor-α and Noncoding RNAs in Bone-Invasive Pituitary Adenomas.
    Zhu H; Guo J; Shen Y; Dong W; Gao H; Miao Y; Li C; Zhang Y
    Clin Cancer Res; 2018 Nov; 24(22):5757-5766. PubMed ID: 29980532
    [No Abstract]   [Full Text] [Related]  

  • 26. Integrative proteomics and transcriptomics revealed that activation of the IL-6R/JAK2/STAT3/MMP9 signaling pathway is correlated with invasion of pituitary null cell adenomas.
    Feng J; Yu SY; Li CZ; Li ZY; Zhang YZ
    Mol Cell Endocrinol; 2016 Nov; 436():195-203. PubMed ID: 27465831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Telomere length and TERT abnormalities in pituitary adenomas.
    Boresowicz J; Kober P; Rusetska N; Maksymowicz M; Goryca K; Kunicki J; Bonicki W; Bujko M
    Neuro Endocrinol Lett; 2018 Mar; 39(1):49-55. PubMed ID: 29803207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential gene expression profiles of invasive and non-invasive non-functioning pituitary adenomas based on microarray analysis.
    Galland F; Lacroix L; Saulnier P; Dessen P; Meduri G; Bernier M; Gaillard S; Guibourdenche J; Fournier T; Evain-Brion D; Bidart JM; Chanson P
    Endocr Relat Cancer; 2010 Jun; 17(2):361-71. PubMed ID: 20228124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational analysis identifies invasion-associated genes in pituitary adenomas.
    Cao C; Wang W; Ma C; Jiang P
    Mol Med Rep; 2015 Aug; 12(2):1977-82. PubMed ID: 25824863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Matrix metalloproteinase 2 and 9 expression correlated with cavernous sinus invasion of pituitary adenomas.
    Liu W; Matsumoto Y; Okada M; Miyake K; Kunishio K; Kawai N; Tamiya T; Nagao S
    J Med Invest; 2005 Aug; 52(3-4):151-8. PubMed ID: 16167532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elevated cell invasion is induced by hypoxia in a human pituitary adenoma cell line.
    Yoshida D; Teramoto A
    Cell Adh Migr; 2007; 1(1):43-51. PubMed ID: 19262092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RIZ1 and histone methylation status in pituitary adenomas.
    Xue Y; Chen R; Du W; Yang F; Wei X
    Tumour Biol; 2017 Jul; 39(7):1010428317711794. PubMed ID: 28718376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association of expression of Leucine-rich repeats and immunoglobulin-like domains 2 gene with invasiveness of pituitary adenoma.
    Zhang H; Yan Q; Xu S; Ou Y; Ye F; Wang B; Lei T; Guo D
    J Huazhong Univ Sci Technolog Med Sci; 2011 Aug; 31(4):520. PubMed ID: 21823015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression and Clinical Significance of miR-26a and Pleomorphic Adenoma Gene 1 (PLAG1) in Invasive Pituitary Adenoma.
    Yu C; Li J; Sun F; Cui J; Fang H; Sui G
    Med Sci Monit; 2016 Dec; 22():5101-5108. PubMed ID: 28012286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research Advances in Pituitary Adenoma and DNA Methylation.
    Wei ZQ; Li Y; Li WH; Lou JC; Zhang B
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2016 Aug; 38(4):475-9. PubMed ID: 27594164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide analysis in a murine Dnmt1 knockdown model identifies epigenetically silenced genes in primary human pituitary tumors.
    Dudley KJ; Revill K; Whitby P; Clayton RN; Farrell WE
    Mol Cancer Res; 2008 Oct; 6(10):1567-74. PubMed ID: 18922972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purine-binding factor (nm23) gene expression in pituitary tumors: marker of adenoma invasiveness.
    Takino H; Herman V; Weiss M; Melmed S
    J Clin Endocrinol Metab; 1995 May; 80(5):1733-8. PubMed ID: 7745027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA Methylation of Tumor Suppressor Genes in Pituitary Neuroendocrine Tumors.
    García-Martínez A; Sottile J; Sánchez-Tejada L; Fajardo C; Cámara R; Lamas C; Barberá VM; Picó A
    J Clin Endocrinol Metab; 2019 Apr; 104(4):1272-1282. PubMed ID: 30423170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of p18(INK4C) is down-regulated in human pituitary adenomas.
    Hossain MG; Iwata T; Mizusawa N; Qian ZR; Shima SW; Okutsu T; Yamada S; Sano T; Yoshimoto K
    Endocr Pathol; 2009; 20(2):114-21. PubMed ID: 19401813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Hypoxia on DDR1 Expression in Pituitary Adenomas.
    Li S; Zhang Z; Xue J; Guo X; Liang S; Liu A
    Med Sci Monit; 2015 Aug; 21():2433-8. PubMed ID: 26286316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.