These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31796257)

  • 1. Material-energy-water nexus: Modelling the long term implications of aluminium demand and supply on global climate change up to 2050.
    Elshkaki A; Lei S; Chen WQ
    Environ Res; 2020 Feb; 181():108964. PubMed ID: 31796257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials, energy, water, and emissions nexus impacts on the future contribution of PV solar technologies to global energy scenarios.
    Elshkaki A
    Sci Rep; 2019 Dec; 9(1):19238. PubMed ID: 31848432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the carbon-energy-water nexus in a rapidly urbanizing catchment: A general equilibrium assessment.
    Su Q; Dai H; Lin Y; Chen H; Karthikeyan R
    J Environ Manage; 2018 Nov; 225():93-103. PubMed ID: 30075307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of the urban water-energy nexus in México City, México, with an assessment of water-system related carbon emissions.
    Valek AM; Sušnik J; Grafakos S
    Sci Total Environ; 2017 Jul; 590-591():258-268. PubMed ID: 28262366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa.
    Mpandeli S; Naidoo D; Mabhaudhi T; Nhemachena C; Nhamo L; Liphadzi S; Hlahla S; Modi AT
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30347771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Methodological Integrated Approach to Analyse Climate Change Effects in Agri-Food Sector: The TIMES Water-Energy-Food Module.
    Tortorella MM; Di Leo S; Cosmi C; Fortes P; Viccaro M; Cozzi M; Pietrapertosa F; Salvia M; Romano S
    Int J Environ Res Public Health; 2020 Oct; 17(21):. PubMed ID: 33105565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing water and energy efficiency in university buildings: a case study.
    Rodrigues F; Silva-Afonso A; Pinto A; Macedo J; Santos AS; Pimentel-Rodrigues C
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):4571-4581. PubMed ID: 30993562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water crisis in Iran: A system dynamics approach on water, energy, food, land and climate (WEFLC) nexus.
    Barati AA; Pour MD; Sardooei MA
    Sci Total Environ; 2023 Jul; 882():163549. PubMed ID: 37076013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Economics of carbon dioxide capture and utilization-a supply and demand perspective.
    Naims H
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22226-22241. PubMed ID: 27189450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries.
    Modaresi R; Pauliuk S; Løvik AN; Müller DB
    Environ Sci Technol; 2014 Sep; 48(18):10776-84. PubMed ID: 25111289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1.5 °C pathways for the Global Industry Classification (GICS) sectors chemicals, aluminium, and steel.
    Teske S; Niklas S; Talwar S; Atherton A
    SN Appl Sci; 2022; 4(4):125. PubMed ID: 35382108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated modelling to assess long-term water supply capacity of a meso-scale Mediterranean catchment.
    Collet L; Ruelland D; Borrell-Estupina V; Dezetter A; Servat E
    Sci Total Environ; 2013 Sep; 461-462():528-40. PubMed ID: 23756213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projected future European power sector water usage across power scenarios and corresponding trends in water availability.
    Mapes AS; Larsen MAD
    J Environ Manage; 2023 Oct; 343():118208. PubMed ID: 37291019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertia of Technology Stocks: A Technology-Explicit Model for the Transition toward a Low-Carbon Global Aluminum Cycle.
    Langhorst M; Billy RG; Schwotzer C; Kaiser F; Müller DB
    Environ Sci Technol; 2024 Jun; 58(22):9624-9635. PubMed ID: 38772914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Freight Sector in Future Climate Change Mitigation Scenarios.
    Muratori M; Smith SJ; Kyle P; Link R; Mignone BK; Kheshgi HS
    Environ Sci Technol; 2017 Mar; 51(6):3526-3533. PubMed ID: 28240022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints.
    Acquaye A; Feng K; Oppon E; Salhi S; Ibn-Mohammed T; Genovese A; Hubacek K
    J Environ Manage; 2017 Feb; 187():571-585. PubMed ID: 27876164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of groundwater management on energy resources and greenhouse gas emissions in California.
    Hendrickson TP; Bruguera M
    Water Res; 2018 Sep; 141():196-207. PubMed ID: 29793159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of climate change and mitigation policies on malt barley supplies and associated virtual water flows in the UK.
    Yawson DO; Adu MO; Armah FA
    Sci Rep; 2020 Jan; 10(1):376. PubMed ID: 31941955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When could global warming reach 4°C?
    Betts RA; Collins M; Hemming DL; Jones CD; Lowe JA; Sanderson MG
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):67-84. PubMed ID: 21115513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios.
    Campeau A; Del Giorgio PA
    Glob Chang Biol; 2014 Apr; 20(4):1075-88. PubMed ID: 24273093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.