These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31796415)
1. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition. Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415 [TBL] [Abstract][Full Text] [Related]
2. A 5-ms Error, 22-μA Photoplethysmography Sensor using Current Integration Circuit and Correlated Double Sampling. Watanabe K; Izumi S; Yano Y; Kawaguchi H; Yoshimoto M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5566-5569. PubMed ID: 30441597 [TBL] [Abstract][Full Text] [Related]
3. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop. Lee J; Jang DH; Park S; Cho S IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807 [TBL] [Abstract][Full Text] [Related]
4. A 2.6 μW Monolithic CMOS Photoplethysmographic (PPG) Sensor Operating With 2 μW LED Power for Continuous Health Monitoring. Caizzone A; Boukhayma A; Enz C IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1243-1253. PubMed ID: 31581097 [TBL] [Abstract][Full Text] [Related]
5. A pilot study on low power pulse rate detection based on compressive sampling. Huang BY; Wang L; Wang B; Lin SJ; Wu D; Zhang YT Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():753-6. PubMed ID: 19963730 [TBL] [Abstract][Full Text] [Related]
6. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation. Kim J; Kim J; Ko H Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729122 [TBL] [Abstract][Full Text] [Related]
7. Effectiveness of the heartbeat interval error and compensation method on heart rate variability analysis. Shintomi A; Izumi S; Yoshimoto M; Kawaguchi H Healthc Technol Lett; 2022; 9(1-2):9-15. PubMed ID: 35340403 [TBL] [Abstract][Full Text] [Related]
8. Reflectance-Based Organic Pulse Meter Sensor for Wireless Monitoring of Photoplethysmogram Signal. Elsamnah F; Bilgaiyan A; Affiq M; Shim CH; Ishidai H; Hattori R Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31295893 [TBL] [Abstract][Full Text] [Related]
9. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications. Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948 [TBL] [Abstract][Full Text] [Related]
10. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849 [TBL] [Abstract][Full Text] [Related]
11. A solution for co-frequency and low SNR problems in heart rate estimation based on photoplethysmography signals. Zhao J; Chen X; Zhang X; Chen X Med Biol Eng Comput; 2022 Dec; 60(12):3419-3433. PubMed ID: 36190610 [TBL] [Abstract][Full Text] [Related]
12. Quantification of error between the heartbeat intervals measured form photoplethysmogram and electrocardiogram by synchronisation. Kuntamalla S; Lekkala RGR J Med Eng Technol; 2018 Jul; 42(5):389-396. PubMed ID: 30324857 [TBL] [Abstract][Full Text] [Related]
13. Development of the irregular pulse detection method in daily life using wearable photoplethysmographic sensor. Suzuki T; Kameyama K; Tamura T Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6080-3. PubMed ID: 19965254 [TBL] [Abstract][Full Text] [Related]
14. Adaptive pulse width control and sampling for low power pulse oximetry. Gubbi SV; Amrutur B IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):272-83. PubMed ID: 25014964 [TBL] [Abstract][Full Text] [Related]
16. Comparison and Noise Suppression of the Transmitted and Reflected Photoplethysmography Signals. Li S; Liu L; Wu J; Tang B; Li D Biomed Res Int; 2018; 2018():4523593. PubMed ID: 30356404 [TBL] [Abstract][Full Text] [Related]
17. IEEE-802.15.4-based low-power body sensor node with RF energy harvester. Tran TV; Chung WY Biomed Mater Eng; 2014; 24(6):3503-10. PubMed ID: 25227063 [TBL] [Abstract][Full Text] [Related]
18. Normally Off ECG SoC With Non-Volatile MCU and Noise Tolerant Heartbeat Detector. Izumi S; Yamashita K; Nakano M; Yoshimoto S; Nakagawa T; Nakai Y; Kawaguchi H; Kimura H; Marumoto K; Fuchikami T; Fujimori Y; Nakajima H; Shiga T; Yoshimoto M IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):641-51. PubMed ID: 26390500 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning Classification for Assessing the Degree of Stenosis and Blood Flow Volume at Arteriovenous Fistulas of Hemodialysis Patients Using a New Photoplethysmography Sensor Device. Chiang PY; Chao PC; Tu TY; Kao YH; Yang CY; Tarng DC; Wey CL Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382707 [TBL] [Abstract][Full Text] [Related]
20. External temperature sensor assisted a new low power photoplethysmography readout system for accurate measurement of the bio-signs. Pandey RK; Chao PC Microsyst Technol; 2021; 27(6):2315-2343. PubMed ID: 33281302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]