These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31796717)

  • 1. Decoding of the relationship between human brain activity and walking paths.
    Kamal SM; Sim S; Tee R; Nathan V; Aghasian E; Namazi H
    Technol Health Care; 2020; 28(4):381-390. PubMed ID: 31796717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexity-based decoding of the relation between human voice and brain activity.
    Ahamed MRA; Babini MH; Namazi H
    Technol Health Care; 2020; 28(6):665-674. PubMed ID: 32200368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information-based decoding of the coupling among human brain activity and movement paths.
    Kamal SM; Dawi NM; Namazi H
    Technol Health Care; 2021; 29(6):1109-1118. PubMed ID: 33749623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexity-Based Decoding of the Coupling Among Heart Rate Variability (HRV) and Walking Path.
    Mujib Kamal S; Babini MH; Krejcar O; Namazi H
    Front Physiol; 2020; 11():602027. PubMed ID: 33324242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving accuracy and precision in estimating fractal dimension of animal movement paths.
    Nams VO
    Acta Biotheor; 2006; 54(1):1-11. PubMed ID: 16823606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexity-based classification of EEG signal in normal subjects and patients with epilepsy.
    Namazi H; Aghasian E; Ala TS
    Technol Health Care; 2020; 28(1):57-66. PubMed ID: 31104032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexity-based decoding of brain-skin relation in response to olfactory stimuli.
    Omam S; Babini MH; Sim S; Tee R; Nathan V; Namazi H
    Comput Methods Programs Biomed; 2020 Feb; 184():105293. PubMed ID: 31887618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal dimensions of short EEG time series in humans.
    Preissl H; Lutzenberger W; Pulvermüller F; Birbaumer N
    Neurosci Lett; 1997 Apr; 225(2):77-80. PubMed ID: 9147378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal-based classification of electroencephalography (EEG) signals in healthy adolescents and adolescents with symptoms of schizophrenia.
    Namazi H; Aghasian E; Ala TS
    Technol Health Care; 2019; 27(3):233-241. PubMed ID: 30829625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higuchi Fractal Dimension as a Method for Assessing Response to Sound Stimuli in Patients with Diffuse Axonal Brain Injury.
    Gladun KV
    Sovrem Tekhnologii Med; 2021; 12(4):63-70. PubMed ID: 34795994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear correlation between fractal dimension of EEG signal and handgrip force.
    Liu JZ; Yang Q; Yao B; Brown RW; Yue GH
    Biol Cybern; 2005 Aug; 93(2):131-40. PubMed ID: 16028075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractal dimension analysis of states of consciousness and unconsciousness using transcranial magnetic stimulation.
    Ruiz de Miras J; Soler F; Iglesias-Parro S; Ibáñez-Molina AJ; Casali AG; Laureys S; Massimini M; Esteban FJ; Navas J; Langa JA
    Comput Methods Programs Biomed; 2019 Jul; 175():129-137. PubMed ID: 31104702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of fractal theory in analysis of human electroencephalographic signals.
    Paramanathan P; Uthayakumar R
    Comput Biol Med; 2008 Mar; 38(3):372-8. PubMed ID: 18234169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal fractal analysis of the rs-BOLD signal identifies brain abnormalities in autism spectrum disorder.
    Dona O; Hall GB; Noseworthy MD
    PLoS One; 2017; 12(12):e0190081. PubMed ID: 29272297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of running fractal dimension for the analysis of changing patterns in electroencephalograms.
    Pradhan N; Dutt DN
    Comput Biol Med; 1993 Sep; 23(5):381-8. PubMed ID: 8222617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of walking patterns using wavelet-based fractal analysis.
    Sekine M; Tamura T; Akay M; Fujimoto T; Togawa T; Fukui Y
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):188-96. PubMed ID: 12503784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Movement Path Tortuosity in Free Ambulation: Relationships to Age and Brain Disease.
    Kearns WD; Fozard JL; Nams VO
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):539-548. PubMed ID: 26829811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A classification method of different motor imagery tasks based on fractal features for brain-machine interface.
    Phothisonothai M; Nakagawa M
    J Integr Neurosci; 2009 Mar; 8(1):95-122. PubMed ID: 19412982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations.
    Lau ZJ; Pham T; Chen SHA; Makowski D
    Eur J Neurosci; 2022 Oct; 56(7):5047-5069. PubMed ID: 35985344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal characterization of internally and externally generated conscious experiences.
    Ibáñez-Molina AJ; Iglesias-Parro S
    Brain Cogn; 2014 Jun; 87():69-75. PubMed ID: 24709357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.