BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31796740)

  • 21. Programming Dissipation Systems by DNA Timer for Temporally Regulating Enzyme Catalysis and Nanostructure Assembly.
    Qin Z; Liu Y; Zhang L; Liu J; Su X
    ACS Nano; 2022 Sep; 16(9):14274-14283. PubMed ID: 36102909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synchronization of two assembly processes to build responsive DNA nanostructures.
    Nie Z; Wang P; Tian C; Mao C
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8402-5. PubMed ID: 24962455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns.
    Yang Y; Endo M; Hidaka K; Sugiyama H
    J Am Chem Soc; 2012 Dec; 134(51):20645-53. PubMed ID: 23210720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential growth of long DNA strands with user-defined patterns for nanostructures and scaffolds.
    Hamblin GD; Rahbani JF; Sleiman HF
    Nat Commun; 2015 May; 6():7065. PubMed ID: 25940750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of One- and Two-Dimensional Nanostructures by the Sequential Assembly of Quadruplex DNA Scaffolds.
    Cao Y; Kuang Y; Yang L; Ding P; Pei R
    Biomacromolecules; 2019 Jun; 20(6):2207-2217. PubMed ID: 31042021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA dynamics and computation based on toehold-free strand displacement.
    Kang H; Lin T; Xu X; Jia QS; Lakerveld R; Wei B
    Nat Commun; 2021 Aug; 12(1):4994. PubMed ID: 34404799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling Matter at the Molecular Scale with DNA Circuits.
    Scalise D; Schulman R
    Annu Rev Biomed Eng; 2019 Jun; 21():469-493. PubMed ID: 31167101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.
    Tsutsumi T; Asakawa T; Kanegami A; Okada T; Tahira T; Hayashi K
    Biotechniques; 2014; 56(4):180-5. PubMed ID: 24724843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Terminating DNA Tile Assembly with Nanostructured Caps.
    Agrawal DK; Jiang R; Reinhart S; Mohammed AM; Jorgenson TD; Schulman R
    ACS Nano; 2017 Oct; 11(10):9770-9779. PubMed ID: 28901745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Signal-Passing DNA-Strand-Exchange Mechanism for Active Self-Assembly of DNA Nanostructures.
    Padilla JE; Sha R; Kristiansen M; Chen J; Jonoska N; Seeman NC
    Angew Chem Int Ed Engl; 2015 May; 54(20):5939-42. PubMed ID: 25810302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
    Wei X; Nangreave J; Liu Y
    Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomarker-triggered, spatiotemporal controlled DNA nanodevice simultaneous assembly and disassembly.
    Zhao T; Fang Y; Wang X; Wang L; Chu Y; Wang W
    Nanoscale; 2024 Jun; 16(23):11290-11295. PubMed ID: 38787656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Assembly of Microparticles by Supramolecular Homopolymerization of One Component DNA Molecule.
    Zeng J; Fu W; Qi Z; Zhu Q; He H; Huang C; Zuo H; Mao C
    Small; 2019 Jun; 15(26):e1805552. PubMed ID: 30734479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA Nanostructures that Self-Heal in Serum.
    Li Y; Schulman R
    Nano Lett; 2019 Jun; 19(6):3751-3760. PubMed ID: 31140279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.
    Zhan P; Dutta PK; Wang P; Song G; Dai M; Zhao SX; Wang ZG; Yin P; Zhang W; Ding B; Ke Y
    ACS Nano; 2017 Feb; 11(2):1172-1179. PubMed ID: 28056172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimalist Approach to Complexity: Templating the Assembly of DNA Tile Structures with Sequentially Grown Input Strands.
    Lau KL; Sleiman HF
    ACS Nano; 2016 Jul; 10(7):6542-51. PubMed ID: 27303951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directing self-assembly of DNA nanotubes using programmable seeds.
    Mohammed AM; Schulman R
    Nano Lett; 2013 Sep; 13(9):4006-13. PubMed ID: 23919535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triplex-directed recognition of a DNA nanostructure assembled by crossover strand exchange.
    Rusling DA; Nandhakumar IS; Brown T; Fox KR
    ACS Nano; 2012 Apr; 6(4):3604-13. PubMed ID: 22443318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Nonconventional Approach to Patterned Nanoarrays of DNA Strands for Template-Assisted Assembly of Polyfluorene Nanowires.
    Bae DG; Jeong JE; Kang SH; Byun M; Han DW; Lin Z; Woo HY; Hong SW
    Small; 2016 Aug; 12(31):4254-63. PubMed ID: 27351291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.